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Chapter 1

Vector spaces

In this chapter, (K,+,×) = R,C or any commutative field.

1.1 Vector space and vector subspace

Definition 1.1. A vector space over K is a non-empty set E endowed with two laws:
• an internal composition law called addition and denoted ”+”, i.e. the application from E×E
to E,
• an external composition law called multiplication by a scalar and denoted by ”·”, i.e. the
application from K× E to E, such that:

(1) (E,+) is a commutative group, where the neutral element is denoted by 0 or 0E and the
symmetric of an element x of E will be denoted −x;

(2) The external law must satisfy for all x ∈ E and α, β ∈ K: α · (β · x) = (αβ) · x;

(3) for all x, y ∈ E and α, β ∈ K:
(α + β) · x = α · x+ β · x;

(4) for all x, y ∈ E and α, β ∈ K:
α · (x+ y) = (α · x) + (α · y).

(5) 1K · x = x.

We call the elements of K ”scalars” and the elements of E ”vectors”.

Elementary property:
Let E be a K-vector space. Let x ∈ E and α ∈ K. So we have:
• α · x = 0E if and only if α = 0K where x = 0E;
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Chapter 1: Vector spaces Zouhir Mokhtari

• −(α · x) = α · (−x) = (−α) · x.

Example 1.2. 1. K is a K-vector space.

2. R is a Q-vector space.

Example 1.3. We consider Kn the set of ordered sequences of n elements of K, i.e., (x1, x2, ..., xn)
with n being a positive integer. Let x = (x1, x2, ..., xn) and x′ = (x′1, x

′
2, ..., x

′
n) two elements of

Kn and let α ∈ K, we set:
x+ x′ = (x1 + x′1, x2 + x′2, ..., xn + x′n) and α · x = (α · x1, α · x2, ..., α · xn).
Equipped with these two laws, it is easy to verify that Kn is a K-vector space. In particular, any
commutative field K is a K-vector space as in the previous example. The typical and simplest
example in this case, when K = R or K = C.

Example 1.4. The set V = F(R,R) of functions from R to R equipped with the laws usual
ways of adding functions, and multiplying a function by a scalar: (f + g)(x) = f(x) + g(x) and
(α · f)(x) = α · f(x), is a K-vector space.

1.1.1 Vector subspace

In this subsection, E will denote a K-vector space.

Definition 1.5. A set F is called a vector subspace of E if

(i) F is a K-vector space.

(ii) ∅ 6= F ⊂ E.

Proving that a set F is a K-vector subspace from the definition can be quite long. There is
another technique to show that a subset F of E is itself a K-vector space.

Theorem 1.6. A subset F of E is a vector subspace of E if the following conditions hold:

(i) 0E ∈ F ;

(ii) ∀x, y ∈ F , x+ y ∈ F ;

(iii) ∀α ∈ K, ∀x ∈ F ; α · x ∈ F .

Interpretation:
The conditions of the definition above mean that a non-empty subset F of E is a vector subspace
of E if F is stable for addition and for multiplication by a scalar.
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Lemma 1.7. A subset F of E is a vector subspace of E if:

(i) (F,+) is a subgroup of (E,+);

(ii) ∀α ∈ K, ∀x ∈ F ; α · x ∈ F .

The following proposition presents a characterization of a vector subspace of E.

Proposition 1.8. F is a vector subspace of E if and only if F is nonempty and verifies:

∀x, y ∈ F, ∀α, β ∈ K;α · x+ β · y ∈ F . (1.1.1)

Proof. (⇒) From the definition of vector subspace, the necessary condition is obvious.
(⇐) Suppose that F 6= ∅ satisfies the condition (1.1.1) and show that it is a vector subspace of
E. For this purpose, we just use lemma 1.7 as follows:
let x and y be two elements of F . For α = 1 and β = −1, we then have x−y ∈ F which implies
(F,+) is a subgroup of (E,+). On the other hand, if we take y = 0 in the condition (1.1.1), we
obtain (ii) from lemma 1.7.

Example 1.9. E and {0E} are vector subspaces of E.

Example 1.10. A straight line passing through the origin, a plane passing through the origin
are vector subspaces of E = R3 on K = R.

Example 1.11. The set F = {(x, y) ∈ R2 | x − y + 1 = 0} is not a vector subspace of R2,
because the zero vector 0R2 does not belong to F .

Proposition 1.12. The intersection of two vector subspaces is a vector subspace.

Proof. Consider F1 and F2 two vector subspaces of E. First 0E ∈ F1, because F1 is a vector
subspace of E. Similarly, 0E ∈ F2. Thus, 0E ∈ F1 ∩ F2 and F1 ∩ F2 is therefore not empty.
Given x, y ∈ F1 ∩ F2 and α, β ∈ K, we then have α · x+ β · y ∈ F1 since F1 is a vector subspace
of E. Similarly, α · x + β · y ∈ F2. Thus, α · x + β · y ∈ F1 ∩ F2. It follows that F1 ∩ F2 is a
vector subspace of E.

Lemma 1.13. The intersection of vector subspaces of a vector space E is a vector subspace of
E.

Remark 1.14. In general, the union of two vector subspaces is not a vector subspace (unless
one of the two spaces contains the other). Indeed, if we consider E = R2 and the two vector
subspaces D1 = {(x, y) ∈ R2 | y = o} and D2 = {(x, y) ∈ R2 | x = o}. Then D1 ∪ D2 is not a
vector subspace of E. For example, (1

2
, 0) + (0, 1

2
) = (1

2
, 1
2
) is the sum of an element of D1 and

an element of D2, but is not in D1 ∪ D2.
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1.2 Free families, Generating families, Bases

Notion of linear combination:
A linear combination of vectors u1, u2, ..., un (with n ∈ N∗) of a K-vector space E, is a vector
which can be written

∑n
i=1 λi · ui. The elements λ1, λ2, ..., λn ∈ K are called coefficients of the

linear combination.

Example 1.15. Let u1, u2, ..., un; n vectors of a K-vector space E. One can always write 0E as
a linear combination of these vectors, because it suffices to take all zero coefficients.

Remark 1.16. If F is a vector subspace of E, and if u1, u2, ..., up ∈ F , then any linear combination∑p
i=1 λi · ui is in F .

Notation 1.17. Given e the vectors u1, u2, ..., un of a K-vector space E, we denote V ec(u1, u2, ..., un)
the set of linear combinations of u1, u2, ..., un. So we write:

V ec(u1, u2, ..., un) =

{
u ∈ E | ∃(λ1, λ2, ..., λn) ∈ Kn;u =

n∑
i=1

λi · ui

}
.

Example 1.18. V ec(0E) = {0E}.
Now, we consider a non-empty family A = (u1, u2, ..., up) of vectors of a K -vector space E

with p ∈ N∗.

Definition 1.19. We say that A generates E, or that it is generator of E if and only if
V ec(u1, u2, ..., up) = E. In other words, any vector of E is a linear combination of the elements
of A.

Definition 1.20. We say that A is free if and only if the null vector {0E} is a linear combina-
tion of elements of A unique way. In other words:

if

p∑
i=1

λi · ui = 0E ⇒ ∀i ∈ {1, · · · , p}λi = 0E .

Remark 1.21. We can use the following expression:
If A is free then we also say that the vectors u1, u2, ..., up are linearly independent.

Properties:
1- Any part containing a generating part of E is still a generating part.
2- A family of a single vector is free if and only if this vector is non-zero.
3- Any family that contains the zero vector is not free.
4- Any family contained in a free family is free.
5- We consider a family A of three vectors u1, u2, u3. If two of them are collinear, then the
family A is related, but the converse is false.
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Definition 1.22. We say that A is a basis of a vector subspace F of E if it is free and
generating. In other words, every vector of F is a linear combination of the elements of A in
a unique way. So we have:

∀u ∈ F, ∃!(λ1, λ2, ..., λp) ∈ Kp;u =

p∑
i=1

λi · ui ,

where λ1, λ2, ..., λp are called the coordinates of the vector u in this basis A, and F is said to
be finite dimension.

1.3 Vector spaces of finite type

Definition 1.23. A vector space is said to be of finite type if it admits a finite generating
family. In other words: if a vector space is generated by a finite family of vectors, it is said to
be of finite type.

Theorem 1.24 (Dimension theorem). In a finite dimensional vector space E, all bases have
the same number of elements. This number denoted dim(E) is called the dimension of E.
Let A be a family of elements of E of finite dimension n. The following properties are equivalent:

(i) A is a basis of E.

(ii) A is free and generates E.

(iii) A is free and of cardinality n.

(v) A is the generator of E and cardinal n.

Remark 1.25. Do not confuse between dimension and cardinal; in a vector space of dimension
n, all bases have the same cardinality, but do not speak of the cardinality of a vector space, nor
of the dimension of a basis.

Remark 1.26. Practically, we use the above theorem to show that a family A is a basis of E.

Example 1.27. Let u1(1, 2), u2(2,−1) be two vectors of the vector space E = R2 on K = R.
Check that the family A = (u1, u2) generates R2. What can we conclude?
To show that A is a generating family, we look for two real λ1, λ2 such that: for all u(x, y) ∈ R2,
u = λ1 · u1 + λ2 · u2. After the calculation we will have λ1 = 1

5
(x+ 2y), λ2 = 1

5
(2x− y). Which

means that A generates R2. On the other hand, it is clear that A is free, of cardinal 2, so A is
a basis of R2.
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Corollary 1.28. Every vector space of finite type admits a finite basis, and all its bases have
the same cardinality.

Corollary 1.29. In a vector space of dimension n, we have:
- Any free family has at most n elements.
- Any generating family has at least n elements.

Proposition 1.30 (Characterization of finite-dimensional vector subspaces). Any vector sub-
space F of a vector space E of finite type is of finite type, and we have dim(F ) ≤ dim(E), with
equality if and only if dim(F ) = dim(E).

Theorem 1.31 (Incomplete basis theorem). Let E be a finite dimensional vector space and L
a free family of E. Then there exists a basis B of finite cardinality which contains L.

1.3.1 Rank of a finite family of vectors

Definition 1.32. Let E be a K-vector space and G = {v1, v2, ..., vm} a family of m vectors
of E. The rank of the family G noted rank(G) is the dimension of the vector subspace F =
V ect(v1, v2, ..., vm) generated by the vectors v1, v2, ..., vm, ie,

rank(G) = dim(F ) .

Properties:
Let E be a K-vector space and G = {v1, v2, ..., vm} a family of vectors of E . So we have:
• 0 ≤ rank(G) ≤ m.
• If dim(F ) = n (finite), then rank(G) ≤ n.
• rank(G) = m if and only if G is free.
• rank(G) = 0 if and only if all vectors of G are zero.

Example 1.33. Let G = {v1 = (2, 3), v2 = (4, 2), v3 = (−3, 4)} be a family of the vector space
R2. Determine the rank of G.
It is clear that v2 and v3 are linearly independent. On the other hand, by solving the linear
system α1 ·v1+α2 ·v2+α3 ·v3 = 0, we get 2v1−v2−v3 = 0. The family G is therefore dependent.
We deduce that V ect(v1, v2, v3) = V ect(v2, v3). So rank(G) = 2.

1.4 Complementary vector subspace

1.4.1 Sum of two vector subspaces

As we saw earlier, in general the union of two vector subspaces is not a vector subspace. Then,
it is useful to know the vector subspaces which contain both these two vector subspaces. Also,
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especially the smallest of them (of course, in the sense of inclusion).

Definition 1.34. Let F1 and F2 be two vector subspaces of a K-vector space E. We call sum
of F1 and F2 the set noted F1 + F2, vectors which are the sum of a vector of F1 and a vector of
F2:

F1 + F2 = {u ∈ E | u = u1 + u2, u1 ∈ F1, u2 ∈ F2}.

Remark 1.35. We can characterize the vectors u of the sum F1 + F2, by:

u ∈ F1 + F2 ⇔ ∃(u1, u2) ∈ F1 × F2 | u = u1 + u2 .

Example 1.36. We consider two intersecting vector lines D1 and D2 in the vector space E = R2.
So, it is quite clear that D1 +D2 = R2.

Example 1.37. We have: F1 + F2 = E if and only if any vector of E can be written as the
sum of a vector of F1 and a vector of F2.

Proposition 1.38. If F1 and F2 are two vector subspaces of a K-vector space E, then F1 + F2

is a vector subspace of E.

Proof. Consider F1 and F2 two vector subspaces of E. First 0E ∈ F1, because F1 is a vector
subspace of E. Similarly, 0E ∈ F2. Thus, 0E = 0E + 0E ∈ F1 + F2 and F1 + F2 is therefore not
empty.
Let x, y ∈ F1 + F2 and α, β ∈ K. Since x ∈ F1 + F2, there are x1 ∈ F1 and x2 ∈ F2 such that
x = x1+x2. So α·x = α·(x1+x2) = (α·x1)+(α·x2) ∈ F1+F2, because α·x1 ∈ F1 and α·x2 ∈ F2.
Similarly for y ∈ F1+F2, we get β ·y = β ·(y1+y2) = (β ·y1)+(β ·y2) ∈ F1+F2, because β ·y1 ∈ F1

and β · y2 ∈ F2 with y = y1 + y2. It follows that α ·x+β · y = (α ·x1 +β · y1) + (α ·x2 +β · y2) ∈
F1 + F2.

Proposition 1.39. If F1 and F2 are two vector subspaces of a K-vector space E, then F1 + F2

is the smallest vector subspace of E containing both F1 and F2.

Proof. We first show that the set F1 +F2 contains both F1 and F2. Indeed, any element u1 ∈ F1

is written u1 = u1 + 0E with u1 belonging to F1 and 0E belonging to F2, because F2 is a vector
subspace of E.
Thereby, u1 belongs to F1 + F2. The same for an element of F2.

Now we show that if H is a vector subspace containing F1 and F2, then F1 + F2 ⊂ H. As
F1 ⊂ H we therefore have, if u1 ∈ F1 then in particular u1 ∈ H.

Similarly, if u2 ∈ F2 then u2 ∈ H. Since H is a vector subspace, then F1 + F2 ⊂ H.
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1.4.2 Direct sum of two vector subspaces

Definition 1.40. Let F1 and F2 be two vector subspaces of a K-vector space E. We say that
the sum F1 +F2 is direct if any vector of F1 +F2 decomposes uniquely as the sum of an element
of F1 and an element of F2.

Notation 1.41. When F1 and F2 are in direct sum, we write F1 + F2 = F1 ⊕ F2.

Remark 1.42. One can characterize the vector subspaces in direct sum, by:

F1 + F2 is direct ⇔ F1 ∩ F2 = {0E} .

Indeed, suppose that the sum F1 + F2 is direct and u ∈ F1 ∩ F2. We can then write on the one
hand u = u+ 0E with u ∈ F1 and 0E ∈ F2, and on the other hand u = 0E +u with 0E ∈ F1 and
u ∈ F2. As the sum F1 +F2 is direct, the decomposition of u following F1 and F2 is unique and
therefore u = 0E. This proves that F1 ∩ F2 ⊂ {0E}. Since F1 and F2 are two vector subspaces
of E, then clearly the inverse inclusion is true.
Conversely, assume that F1 ∩ F2 = {0E} and show that the sum F1 + F2 is direct. Suppose we
have

u = u1 + u2 = u′1 + u′2 , (1.4.1)

with u1, u
′
1 ∈ F1 and u2, u

′
2 ∈ F2. So, u1 − u′1 = u′2 − u2. Since u1 − u′1 ∈ F1 and u′2 − u2 ∈ F2,

the vector v = u1 − u′1 = u′2 − u2 ∈ F1 ∩ F2 = {0E}. Which implies that u1 = u′1 and u2 = u′2.
Thus, the writing (1.2) of u is unique, which means that the sum F +G is direct.

Example 1.43. Let H be a subset of a K-vector space E. We can define the vector space
generated by H as the sum of the lines generated by the elements of H. For example, if we
consider the vectors e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1) and u = (1, 1, 0) of R3, then it is
clear that the vector space generated by {e1, e2, e3} is the entire space R3 while the vector space
generated by {e1, e2, u} is a plane. The subspaces generated by {e1, e2} and {e3} are in direct
sum, but the subspaces generated by {e1, e2} and by {e2, u} are not in direct sum.

Example 1.44. Two secant lines of the plane R2 are in direct sum, since their intersection is
reduced to the zero vector (u = 0R2).

Example 1.45. Two secant planes of the space R3 cannot be in direct sum, since their inter-
section is a straight line and therefore does not contain only the zero vector (u = 0R3).

1.4.3 Complementary subspaces

Definition 1.46. Let F1 and F2 be two vector subspaces of a K-vector space E. We say that
F1 and F2 are supplementary in E if the sum F1 + F2 is direct and if this sum is equal to E.

8
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Remark 1.47. One can characterize the Complementary subspaces, by:

F1 et F2 are complementary in E ⇔ F1 ∩ F2 = {0E} et F1 + F2 = E .

In other words: F1 ⊕ F2 = E.

Corollary 1.48. Let F1 and F2 be two vector subspaces of a K-vector space E. So we have:

F1 and F2 additional in E ⇔ ∀u ∈ E,∃!(u1, u2) ∈ F1 × F2 | u = u1 + u2 .

Remark 1.49. The notion of spaces in direct sum must not be confused with the notion of
additional spaces in another. Indeed, if we consider two intersecting vector lines D1 and D2 in
the vector space E = R3 with D1 ∩ D2 = {0E}, and let P be the vector plane that contains
them. So, it is clear that D1 + D2 = P . Which means that their sum is direct and equals
exactly the plan P = D1 ⊕D2. Thus, D1 and D2 are supplementary only in P , but not in the
whole space.

Remark 1.50. In general, there is no uniqueness of the supplementary. In other words, for a
vector subspace F1 of a K-vector space E, we can find many different supplementary F2 such
as F1 ⊕ F2 = E.

Example 1.51. Let D1, D2 and D3 be three two-by-two secant lines of the vector space E = R2.
So it is easy to see that D1⊕D2 = D1⊕D3 = R2. Which means that D2 and D3 are supplements
of D1.

Existence of additional subspaces in finite dimension:
The incomplete basis theorem says that in a finite dimensional vector space, any free family can
be completed into a basis of the space. We immediately deduce the existence of supplementary
ones.

Proposition 1.52. Let E be a finite dimensional vector space and F1 a vector subspace of E.
There exists a vector subspace F2 such that

E = F1 ⊕ F2 et dim(E) = dim(F1) + dim(F2) .

Theorem 1.53 (Grassmann formula). If F1 and F2 are vector subspaces of E and F1 + F2 is
of finite type, then

dim(F1 + F2) = dim(F1) + dim(F2)− dim(F1 ∩ F2) .

Theorem 1.54 (Characterization of supplementary). If E is of finite type, then the following
conditions are equivalent.

(i) E = F1 ⊕ F2.

(ii) F1 ∩ F2 = {0E} and dim(E) = dim(F1) + dim(F2).

(iii) E = F1 + F2 and dim(E) = dim(F1) + dim(F2).

9
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1.5 Terminology translation

English French Arabic
Vector vecteur
space éspace
field corps
Identity element élément neutre
Integer entier
Basis base
Scalar scalair
Linear combination combinaison linéaire
Free libre
Rank rang
Direct sum somme direct

10



Chapter 1: Vector spaces Zouhir Mokhtari

1.6 Exercises

Exercise 1.
For any x, y ∈ N, define an operation of “addition” by x+y = the maximum of x and y and

an operation of “scalar multiplication” by α× x = αx for any α ∈ R and x ∈ N.
Is (N,+,×) a vector space?

Exercise 2.
For any (x1, x2), (y1, y2) ∈ R2, define an operation of “addition” by

(x1, x2) + (y1, y2) = (x1 + y1, x2 + y2)

and an operation of “scalar multiplication” by

α× (x1, x2) = (αx1, 0)

for any α ∈ R and x ∈ R2.
Is (R2,+,×) a vector space?

Exercise 3.
Let F be the vector space of all functions f : R −→ R and K = R. Determine which of the

following subsets E are subspaces of F . Give reasons for your answers.

1. E = {f ∈ F |f(−x) = f(x),∀x ∈ R}, the set of even functions.

2. E = {f ∈ F |f(−x) = −f(x), ∀x ∈ R}, the set of odd functions.

3. E = {f ∈ F |f(0) = 0}.

Exercise 4.
Let E be the set of all functions f ∈ F that satisfy the differential equation

f ′′ = 0.

Show that E is a subspace of F .

Exercise 5.
Let V be a K−space with subspaces E1, E2. Give an example to show that E1 ∪ E2 may

not be a subspace of V .

Exercise 6.
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Show that in the space R3 the vectors x = (1, 1, 0), y = (0, 1, 2), and z = (3, 1,−4) are
linearly dependent.

Exercise 7.
Let p(x) = x2 + 2x − 3, q(x) = 2x2 − 3x + 4, and r(x) = ax2 − 1. Find the value of a for

which the set {p, q, r} is linearly independent.

Exercise 8.
Let u = (1,−1, 3), v = (1, 0, 1), and w = (1, 2, c) where c ∈ R. Find the values of c for wich

the set {u, v, w} is a basis for R3.

Exercise 9.
Let P2 [X] be the vector space of a polynomial of degree less than or equal to 2 and F =

{P1, P2, P3} where:

P1 (X) = X2, P2 (X) = (X − 1)2 , P3 (X) = (X + 1)2

Show that F is a basis for P2 [X] . Deduce the expression of the polynomial Q (X) = 12 in this
basis.

Exercise 10.
Let R3 be the vector space on the field R, G = [{(1, 1, 0), (0, 0, 1), (1, 1, 1)}] be a vector

subspace of R3 and let the set F be defined as:

F =
{

(x, y, z) ∈ R3/2x+ y − z = 0
}
.

1. Show that F is a vector subspace of R3.

2. Find a basis for each of: F ∩G,F +G,G, F (if any), and give their dimensions.

3. Is R3 = F
⊕

G ?
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