Algebra tutorial series 1

Exercise 1 Which of the following sentences are propositions? What are the truth values of those that are propositions?

- 1. Paris is in France or Madrid is in China.
- 2. Open the door.
- 3. The moon is a satelite of the earth.
- 4. x + 5 = 7.
- 5. x + 5 > 9 for every real number x.

Exercise 2 Determine whether each of the following implications is true or false.

- 1. If 0.5 is an integer, then 1 + 0.5 = 3.
- 2. If 5 > 2 then cats can fly.
- 3. If $3 \times 5 = 15$ then 1 + 2 = 3.
- 4. For any real $x \in \mathbb{R}$, if $x \leq 0$ then (x-1) < 0.

Exercise 3 Are the statements $P \Rightarrow (Q \lor R)$ and $(P \Rightarrow Q) \lor (P \Rightarrow R)$. logically equivalent? Simplify the following statements.

1.
$$(P \Rightarrow \overline{Q})$$
.
2. $(\overline{P} \lor \overline{Q}) \Rightarrow \overline{(\overline{Q} \land R)}$
3. $\overline{((P \Rightarrow \overline{Q}) \lor \overline{R \land \overline{R}})}$

Exercise 4 Consider the statement "for all integers a and b, if a + b is even, then a and b are even"

- 1. Write the contrapositive of the statement.
- 2. Write the converse of the statement.
- 3. Write the negation of the statement.
- 4. Is the original statement true or false? Prove your answer.
- 5. Is the contrapositive of the original statement true or false? Prove your answer.
- 6. Is the converse of the original statement true or false? Prove your answer.
- 7. Is the negation of the original statement true or false? Prove your answer.

Exercise 5 Verify whether the following compound propositions are tautologies or contradictions or Contingency

1.
$$(P \land Q) \land (P \lor Q)$$

2. $((P \lor Q) \land \overline{P}) \Rightarrow Q$
3. $(P \Rightarrow Q) \Leftrightarrow (\overline{P} \Rightarrow Q)$
4. $((P \Rightarrow Q) \land (Q \Rightarrow R)) \Rightarrow (P \Rightarrow R).$

Exercise 6 Complete, when possible, with \forall or \exists to obtain the strongest true statements.

1. $\dots x \in \mathbb{R}$, $(x+1)^2 = x^2 + 2x + 1$. 2. $\dots x \in \mathbb{R}$, $x^2 + 3x + 2 = 0$. 3. $\dots x \in \mathbb{R}/2x + 1 = 0$ 4. $\dots x \in \mathbb{N}/x \le \pi$ 5. $\dots x \in \mathbb{R}$: $x^2 + 2x + 3 = 0$

 $6. \cdots x \in \emptyset : 2 = 3.$

Exercise 7 Determine among the following propositions which ones are true and write, after justification, the negation of those which are false

1. $\forall x \in \mathbb{R}^+, x^3 \ge x$. 2. $\forall x \in \mathbb{R}, \exists y \in \mathbb{R} : x + y > 0$. 3. $\exists x \in \mathbb{R} : \forall y \in \mathbb{R}, x + y > 0$. 4. $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, x + y > 0$. 5. $\exists x \in \mathbb{R} : \forall y \in \mathbb{R}, y^2 > x$. 6. $\forall x \in \mathbb{R} : \forall y \in \mathbb{R} : x + y > xy$. 7. $\exists (x, y, z) \in \mathbb{R}^3 / |x - y| = 3, |y - z| = 4 \text{ and } |x - z| = 8$. **N.B.** We recall the triangular inequality : $|a + b| \le |a| + |b|$.

Exercise 8 Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ a function. Give the negation of :

- 1. $\forall M > 0, \exists A > 0 : \forall x \ge A, f(x) > M.$
- 2. $\forall x \in \mathbb{R}, f(x) > 0 \Rightarrow x \le 0.$

3.
$$\forall \epsilon > 0, \exists \eta > 0 : \forall (x, y) \in I^2, (|x - y| \le \eta \Rightarrow |f(x) - f(y)| \le \epsilon)$$

Exercise 9 Soit $f : \mathbb{R} \longrightarrow \mathbb{R}$ a function. Express using quantifiers, the following propositions :

- 1. f is constant, f is not constant.
- 2. f is increasing.
- 3. f is bounded.

Exercise 10 1. Prove by direct reasoning that if $: a, b \in \mathbb{Q}$, then $a + b \in \mathbb{Q}$.

- 2. Prove by contraposition that for all real x and y, $(x \neq y) \Rightarrow (x+1)(y-1) \neq (x-1)(y+1)$.
- 3. Prove by contraposition that, if n^2 is even, then n is even.
- 4. Prove by contradiction that $\sqrt{2}$ is an irrational number.
- 5. Prove by induction that, for all $n \in \mathbb{N}^*, 2^{n-1} \leq n^! \leq n^n$.

Additional exercises

Exercise 1 I. Let P, Q and R three propositions, give the negation of

- 1. $P \wedge (\overline{Q} \vee R)$
- 2. $(P \land Q) \Rightarrow R$.
- II. Write the negations of the following propositions
- 1. $P: 0 < x \le 1$,
- 2. $Q: (x^2 = 1) \Rightarrow (x = 1)$

Exercise 2 Use the truth table method to verify whether the following logical consequences and equivalences are correct :

1. $[(P \Rightarrow (Q \lor R)) \land \overline{R}] \Vdash P \Rightarrow Q.$ 2. $(P \Rightarrow Q) \land \overline{Q} \Vdash \overline{P}$ 3. $\overline{P \land Q} \Leftrightarrow \overline{P} \lor \overline{Q}$ 4. $(P \lor Q) \land (\overline{P} \Rightarrow \overline{Q}) \Leftrightarrow Q$ 5. $(P \land Q) \lor R \Leftrightarrow (P \Rightarrow \overline{Q}) \Rightarrow R$ 6. $((P \Rightarrow Q) \Rightarrow Q) \Rightarrow Q \Leftrightarrow P \Rightarrow Q$

N.B. F_2 is the logical consequence of F_1 , if F_2 is true every time F_1 is true and we write $F_1 \Vdash F_2$

Exercise 3 1. Let n > 0. Prove by contradiction that if n is the square of an integer, then 2n is not the square of an integer.

- 2. Prove by induction that, for n any positive integer, $6^n 1$ is divisible by 5.
- 3. Prove by contradiction that if you arrange (n + 1) pairs of socks in n distinct drawers, then there is at least one drawer containing at least 2 pairs of socks.