Algebra tutorial series 1

Exercise 1 Which of the following sentences are propositions? What are the truth values of those that are propositions?

1. Paris is in France or Madrid is in China.
2. Open the door.
3. The moon is a satelite of the earth.
4. $x+5=7$.
5. $x+5>9$ for every real number x.

Exercise 2 Determine whether each of the following implications is true or false.

1. If 0.5 is an integer, then $1+0.5=3$.
2. If $5>2$ then cats can fly.
3. If $3 \times 5=15$ then $1+2=3$.
4. For any real $x \in \mathbb{R}$, if $x \leq 0$ then $(x-1)<0$.

Exercise 3 Are the statements $P \Rightarrow(Q \vee R)$ and $(P \Rightarrow Q) \vee(P \Rightarrow R)$. logically equivalent?
Simplify the following statements.

1. $\overline{(P \Rightarrow \bar{Q})}$.
2. $(\bar{P} \vee \bar{Q}) \Rightarrow \overline{(\bar{Q} \wedge R)}$.
3. $\overline{((P \Rightarrow \bar{Q}) \vee \overline{R \wedge \bar{R}})}$

Exercise 4 Consider the statement "for all integers a and b, if $a+b$ is even, then a and b are even"

1. Write the contrapositive of the statement.
2. Write the converse of the statement.
3. Write the negation of the statement.
4. Is the original statement true or false? Prove your answer.
5. Is the contrapositive of the original statement true or false? Prove your answer.
6. Is the converse of the original statement true or false? Prove your answer.
7. Is the negation of the original statement true or false? Prove your answer.

Exercise 5 Verify whether the following compound propositions are tautologies or contradictions or Contingency

1. $(P \wedge Q) \wedge \overline{(P \vee Q)}$
2. $((P \vee Q) \wedge \bar{P}) \Rightarrow Q$
3. $(P \Rightarrow Q) \Leftrightarrow(\bar{P} \Rightarrow Q)$
4. $((P \Rightarrow Q) \wedge(Q \Rightarrow R)) \Rightarrow(P \Rightarrow R)$.

Exercise 6 Complete, when possible, with \forall or \exists to obtain the strongest true statements.

1. $\cdots x \in \mathbb{R}, \quad(x+1)^{2}=x^{2}+2 x+1$.
2. $\cdots x \in \mathbb{R}, \quad x^{2}+3 x+2=0$.
3. $\cdots x \in \mathbb{R} / \quad 2 x+1=0$
4. $\cdots x \in \mathbb{N} / \quad x \leq \pi$
5. $\cdots x \in \mathbb{R}: \quad x^{2}+2 x+3=0$
6. $\cdots x \in \emptyset: 2=3$.

Exercise 7 Determine among the following propositions which ones are true and write, after justification, the negation of those which are false

1. $\forall x \in \mathbb{R}^{+}, x^{3} \geq x$.
2. $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}: x+y>0$.
3. $\exists x \in \mathbb{R}: \forall y \in \mathbb{R}, x+y>0$.
4. $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, x+y>0$.
5. $\exists x \in \mathbb{R}: \forall y \in \mathbb{R}, y^{2}>x$.
6. $\forall x \in \mathbb{R}: \forall y \in \mathbb{R}: x+y>x y$.
7. $\exists(x, y, z) \in \mathbb{R}^{3} /|x-y|=3,|y-z|=4$ and $|x-z|=8$.
$\boldsymbol{N} . \boldsymbol{B}$. We recall the triangular inequality : $|a+b| \leq|a|+|b|$.
Exercise 8 Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ a function. Give the negation of:
8. $\forall M>0, \exists A>0: \forall x \geq A, f(x)>M$.
9. $\forall x \in \mathbb{R}, f(x)>0 \Rightarrow x \leq 0$.
10. $\forall \epsilon>0, \exists \eta>0: \forall(x, y) \in I^{2},(|x-y| \leq \eta \Rightarrow|f(x)-f(y)| \leq \epsilon)$.

Exercise 9 Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ a function. Express using quantifiers, the following propositions :

1. f is constant, f is not constant.
2. f is increasing.
3. f is bounded.

Exercise 10 1. Prove by direct reasoning that if : $a, b \in \mathbb{Q}$, then $a+b \in \mathbb{Q}$.
2. Prove by contraposition that for all real x and $y,(x \neq y) \Rightarrow(x+1)(y-1) \neq(x-1)(y+1)$.
3. Prove by contraposition that, if n^{2} is even, then n is even.
4. Prove by contradiction that $\sqrt{2}$ is an irrational number.
5. Prove by induction that, for all $n \in \mathbb{N}^{*}, 2^{n-1} \leq n^{!} \leq n^{n}$.

Additional exercises

Exercise 1 I. Let P, Q and R three propositions, give the negation of

1. $P \wedge(\bar{Q} \vee R)$
2. $(P \wedge Q) \Rightarrow R$.
II. Write the negations of the following propositions
3. $P: \quad 0<x \leq 1$,
4. $Q:\left(x^{2}=1\right) \Rightarrow(x=1)$

Exercise 2 Use the truth table method to verify whether the following logical consequences and equivalences are correct :

1. $[(P \Rightarrow(Q \vee R)) \wedge \bar{R}] \Vdash P \Rightarrow Q$.
2. $(P \Rightarrow Q) \wedge \bar{Q} \Vdash \bar{P}$
3. $\overline{P \wedge Q} \Leftrightarrow \bar{P} \vee \bar{Q}$
4. $(P \vee Q) \wedge(\bar{P} \Rightarrow \bar{Q}) \Leftrightarrow Q$
5. $(P \wedge Q) \vee R \Leftrightarrow(P \Rightarrow \bar{Q}) \Rightarrow R$
6. $((P \Rightarrow Q) \Rightarrow Q) \Rightarrow Q \Leftrightarrow P \Rightarrow Q$
N.B. F_{2} is the logical consequence of F_{1}, if F_{2} is true every time F_{1} is true and we write $F_{1} \Vdash F_{2}$

Exercise 3 1. Let $n>0$. Prove by contradiction that if n is the square of an integer, then $2 n$ is not the square of an integer.
2. Prove by induction that, for n any positive integer, $6^{n}-1$ is divisible by 5 .
3. Prove by contradiction that if you arrange $(n+1)$ pairs of socks in n distinct drawers, then there is at least one drawer containing at least 2 pairs of socks.

