Algebra tutorial series 2

Exercise 1 Let A, B and C be three subsets of a set E. Show that

1. $\overline{A \cap B} = \overline{A} \cup \overline{B}$.

2. $\overline{A \cup B} = \overline{A} \cap \overline{B}$.

Where \overline{A} denotes the complement of A in E. Simplify the following sets :

1. $\overline{A \cup B} \cap C \cup \overline{A};$

2. $\overline{A \cap B} \cup C \cap \overline{A}$.

Exercise 2 Let E be a non-empty set. Show that :

- 1. $\forall A, B \in P(E) : A \cup B = A \cap B \Rightarrow A = B.$
- 2. $\forall A, B, C \in P(E) : (A \cap B = A \cap C \text{ and } A \cup B = A \cup C) \Rightarrow B = C.$

Exercise 3 Symmetric difference

Let A and B be two parts of a set E. We call the symmetric difference of A and B, and we denote $A\Delta B$, the set defined by :

$$A\Delta B = (A \cup B) \setminus (A \cap B).$$

- 1. Make a drawing, then calculate $A\Delta B$ for $A = \{0, 1, 2, 3\}$ and $B = \{2, 3, 4\}$.
- 2. Show that $A\Delta B = (A \setminus A \cap B) \cup (B \setminus A \cap B)$.
- 3. Determine the sets $A\Delta E$, $A\Delta A$ and $A\Delta \emptyset$.
- 4. Suppose $A \Delta B = A \cap B$. Prove by contradiction that : $A = \emptyset$, $(B = \emptyset)$.
- 5. Let $C \in P(E)$. Show that $A\Delta B = A\Delta C$ if and only if B = C.

Exercise 4 1. What is the image of the sets : \mathbb{R} , $[0, 2\pi]$, $[0, \pi/2]$, and the inverse image of the sets : [0, 1], [3, 4], [1, 2] by the application $x \mapsto \sin x$.

Let $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2 + 1$. Consider the sets A = [-3, 2], B = [0, 4].

- 2. Compare the sets $f(A \cap B)$ and $f(A) \cap f(B)$
- 3. What condition must satisfy f so that $f(A \cap B) = f(A) \cap f(B)$.

Exercise 5 Let E = [0,1], F = [-1,1], and G = [0,2] be three intervals of \mathbb{R} . Consider the map f from E to G defined by : f(x) = 2 - x, and the map g from F to G defined by : $g(x) = x^2 + 1$.

- 1. Determine $f(\{1/2\}), f^{-1}(\{0\}), g([-1,1]), g^{-1}([0,2]).$
- 2. Is the map f bijective ? justify.
- 3. Is the application g bijective ? justify.

Exercise 6 Let \mathcal{R} be the binary relation defined in \mathbb{R} by :

$$\forall x \in \mathbb{R}, \quad x\mathcal{R}y \Leftrightarrow x^2 - y^2 = x - y.$$

- 1. Show that \mathcal{R} is an equivalence relation.
- 2. Calculate the equivalence class of an element x of \mathbb{R} .
- 3. Determine the equivalence class of 0, deduce that of 1.

Exercise 7 On \mathbb{R}^2 , let \prec be the relation given by

$$\forall (x,y), (x',y') \in \mathbb{R}^2, \quad (x,y) \prec (x',y') \Leftrightarrow x - x' \ge 0 \land y = y'.$$

Show that \prec is an order relation. Is it a total order?

Additional exercises

Exercise 1 Determine the sets A and B that simultaneously satisfy the following conditions : 1. $A \cup B = \{1, 2, 3, 4, 5\},\$

- 2. $A \cap B = \{3, 4, 5\},\$
- 3. $1 \notin A \setminus B$,
- 4. $2 \notin B \setminus A$.

Exercise 2 Let A and B be two sets. Show that :

- 1. $P(A \cap B) = P(A) \cap P(B)$.
- 2. Let us show that in general, we do not have $P(A \cup B) \subseteq P(A) \cup P(B)$. (Consider $A = \{0\}, B = \{1\}$).

Exercise 3 Let f be a map from E to F, let $A \subseteq E$ and $B \subseteq F$. Show that

- 1. $A \subseteq f^{-1}(f(A))$, and $A = f^{-1}(f(A))$ for all $A \subseteq E$ if and only if f is injective.
- 2. $f(f^{-1}(B)) \subseteq B$ and $B = f(f^{-1}(B))$ for all $B \subseteq F$ if and only if f is surjective.