Course : Algebra 3

Year : 2023/2024
Department of Computer Science

Chapter 1:

Determinants of matrices

1 Matrices and their properties

Definition 1.1 A rectangular array that is defined by

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)
$$

represents an $m \times n$ matrix where m and n are, respectively, row dimension and column dimension. The elements which are denoted by $a_{i j}$ are real numbers for $1 \preccurlyeq i \preccurlyeq m$ and $1 \preccurlyeq j \preccurlyeq n$.

Example 1.1 Let A be an $m \times n$ matrix defined by

$$
A=\left(\begin{array}{ll}
4 & 7 \\
1 & 2 \\
0 & 8
\end{array}\right)
$$

Here, we have $m=3$ and $n=2$.
Definition 1.2, Let $A=\left[a_{i j}\right]_{m \times n}$ be an $m \times n$ matrix and Let $B=\left[b_{j i}\right]_{n \times m}$ be an $n \times m$ matrix with $b_{j i}=a_{i j}$. Then the matrix B is called the transpose of A and denoted by A^{T}.

Example 1.2 Let A be a 2×3 matrix defined by

$$
A=\left(\begin{array}{lll}
1 & 3 & 4 \\
2 & 0 & 5
\end{array}\right)
$$

The transpose of A is given by

$$
A^{T}=\left(\begin{array}{ll}
1 & 2 \\
3 & 0 \\
4 & 5
\end{array}\right)
$$

Remark 1.1 Let A be an $m \times n$ matrix. A is said to be a square matrix if we have $m=n$
Definition 1.3 Assume that A is a square matrix of order n and let $a_{i j}$ be real numbers for all i, j.

1. An identity matrix is an $n \times n$ matrix with $a_{i j}=0$ for $i \neq j$ and $a_{i j}=1$ for $i=j$. This type of matrices is denoted by I_{n}.
2. If the elements of A satisfy $a_{i j}=0$ for $i \neq j$, then A can be called a diagonal matrix.
3. If $a_{i j}=0$ for all $i \prec j$ (or $i \succ j$), then A represents a so-called lower (or upper) triangular matrix.
4. If $a_{i j}=a_{j i}$ for all i, j, then we can say that A is a symmetric matrix.

Example 1.3 Let

$$
A=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), B=\left(\begin{array}{ll}
5 & 0 \\
0 & 1
\end{array}\right), C=\left(\begin{array}{lll}
5 & 6 & 7 \\
0 & 1 & 3 \\
0 & 0 & 2
\end{array}\right), D=\left(\begin{array}{ll}
6 & 0 \\
1 & 5
\end{array}\right)
$$

and

$$
E=\left(\begin{array}{llll}
3 & 8 & 9 & 5 \\
8 & 1 & 2 & 4 \\
9 & 2 & 6 & 3 \\
5 & 4 & 3 & 1
\end{array}\right)
$$

Thus, we can see that
A is an identity matrix.
B is a diagonal matrix.
C is an upper triangular matrix.
D is a lower triangular matrix.
E is a so-called symmetric matrix.

Theorem 1.1 Suppose that A, B and C are matrices of order $m \times n$ and that α is a scalar. Then we get that
a) $A+B=B+A$.
b) $(A+B)+C=A+(B+C)$.
c) $\alpha(A+B)=\alpha A+\alpha B$.
d) $(A+B)^{T}=A^{T}+B^{T}$.

Theorem 1.2 We assume that A is a matrix of order $m \times n$ and that α is a scalar. Take that B and C are matrices of order $n \times q$, then
a) $A(B+C)=A B+A C$.
b) $\alpha(A B)=(\alpha A) B$.
c) $\left(A^{T}\right)^{T}=A$.
d) $(A B)^{T}=B^{T} A^{T}$.

Remark 1.2 Under the condition that A is a matrix of order $m \times n$, we have

$$
A I_{n}=I_{m} A=A
$$

2 Calculation of determinants

Definition 2.1 Assume that A is a square matrix of order n and that the elements of A, denoted by $a_{i j}$, are real numbers for all i, j. Let $\left|M_{i j}\right|$ be the minor of the matrix A corresponding to $a_{i j}$. Then the determinant of A is given by

$$
\begin{equation*}
|A|=\sum_{i=1}^{n} a_{i j}(-1)^{i+j}\left|M_{i j}\right| \tag{1}
\end{equation*}
$$

with j is fixed.
Example 2.1 Consider

$$
A=\left(\begin{array}{ll}
3 & 2 \\
1 & 2
\end{array}\right), \text { and } B=\left(\begin{array}{ccc}
3 & 4 & 1 \\
2 & 6 & 7 \\
3 & 0 & 4
\end{array}\right)
$$

It is obvious that A and B represent square matrices and their determinants are given by

$$
|A|=4
$$

$$
\begin{aligned}
|B| & =3\left|\begin{array}{ll}
6 & 7 \\
0 & 4
\end{array}\right|-4\left|\begin{array}{ll}
2 & 7 \\
3 & 4
\end{array}\right|+1\left|\begin{array}{ll}
2 & 6 \\
3 & 0
\end{array}\right| \\
& =106
\end{aligned}
$$

Proposition 2.1 Consider two square matrices of the same order, denoted by A and B, and a scalar α. Assume that $a_{i j}$ are the elements of A. Then the following statements are true.
a) $|A B|=|A||B|$.
b) $|A|=\prod_{i=1}^{n} a_{i i}$, in the case where A defines a lower or an upper triangular matrix and in the case where A represents a diagonal matrix of order n.
c) $|\alpha A|=\alpha^{n}|A|$.
d) $|A|=\left|A^{T}\right|$.
e) $\left|I_{n}+D C\right|=\left|I_{m}+C D\right|$, in the case where C is a matrix of order $m \times n$, and where D is a matrix of order $n \times m$.
f) $|A|=0$ in the case where there exists a column or a row of zeros

3 Invertible matrices

Definition 3.1 We say that B is the inverse of an $n \times n$ matrix A in the case where B is an $n \times n$ matrix satisfying $B A=I_{n}$ and $A B=I_{n}$ such that the inverse of A is represented by A^{-1}.

Proposition 3.1 Suppose that A is a square matrix of order n. Then we have

$$
\begin{equation*}
|A| I_{n}=\operatorname{Aadj}(A)=\operatorname{adj}(A) A \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
\operatorname{adj}(A)=C^{T} \tag{3}
\end{equation*}
$$

with

$$
\begin{equation*}
C_{i j}=(-1)^{i+j}\left|M_{i j}\right| \tag{4}
\end{equation*}
$$

Remark 3.1 Let A be an $n \times n$ matrix and let $|A| \neq 0$. Thus, we can say that the inverse of A exists and is defined as

$$
\begin{equation*}
A^{-1}=\frac{1}{|A|} \operatorname{adj}(A) \tag{5}
\end{equation*}
$$

Example 3.1 Find the inverse of A in the case where

$$
A=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)
$$

and where

$$
A=\left(\begin{array}{lll}
3 & 4 & 1 \\
5 & 6 & 7 \\
0 & 1 & 2
\end{array}\right)
$$

1) Under the condition that $a_{11} a_{22}-a_{21} a_{12} \neq 0, A^{-1}$ exists with

$$
A^{-1}=\frac{1}{a_{11} a_{22}-a_{21} a_{12}}\left(\begin{array}{cc}
a_{22} & -a_{12} \\
-a_{21} & a_{11}
\end{array}\right)
$$

2) We have

$$
\begin{aligned}
|A| & =3\left|\begin{array}{rr}
6 & 7 \\
1 & 2
\end{array}\right|-4\left|\begin{array}{ll}
5 & 7 \\
0 & 2
\end{array}\right|+1\left|\begin{array}{cc}
5 & 6 \\
0 & 1
\end{array}\right| \\
& =-20
\end{aligned}
$$

We note that $|A| \neq 0$, then the inverse of A is

$$
A^{-1}=-\frac{1}{20}\left(\begin{array}{ccc}
5 & -7 & 22 \\
-10 & 6 & -16 \\
5 & -3 & -2
\end{array}\right)
$$

such that

$$
\operatorname{adj}(A)=\left(\begin{array}{ccc}
5 & -10 & 5 \\
-7 & 6 & -3 \\
22 & -16 & -2
\end{array}\right)
$$

Theorem 3.1 Assume that A is a matrix and A^{-1} exists. Then we can say that A^{-1} is unique.
Proof : We suppose that A_{1} and A_{2} are the inverses of A. Here, we can take

$$
\begin{equation*}
A_{1} A=I_{n}, \text { and } A A_{1}=I_{n} \tag{6}
\end{equation*}
$$

with

$$
\begin{equation*}
A_{2} A=I_{n}, \text { and } A A_{2}=I_{n} \tag{7}
\end{equation*}
$$

This leads to

$$
\begin{aligned}
A_{2} & =I_{n} A_{2} \\
& =\left(A_{1} A\right) A_{2} \\
& =A_{1}\left(A A_{2}\right) \\
& =A_{1} I_{n} \\
& =A_{1}
\end{aligned}
$$

Then, we deduce that

$$
\begin{equation*}
A_{2}=A_{1}, \tag{8}
\end{equation*}
$$

which means that A^{-1} is unique.
Theorem 3.2 Let A be a square matrix of order n. We can say that the matrix A is invertible if and only if the determinant of A is not equal to zero.

Proof :
a) Under the assumptions that the inverse of A exists, we get

$$
\begin{equation*}
\left|A A^{-1}\right|=|A|\left|A^{-1}\right| \tag{9}
\end{equation*}
$$

This leads to

$$
\begin{equation*}
|I|=|A|\left|A^{-1}\right| \tag{10}
\end{equation*}
$$

From the fact that $|I|=1$ which represents the determinant of a diagonal matrix, we can obtain

$$
\begin{equation*}
1=|A|\left|A^{-1}\right| \tag{11}
\end{equation*}
$$

In the sequel, we deduce that

$$
\begin{equation*}
|A| \neq 0 \tag{12}
\end{equation*}
$$

b) We let

$$
\begin{equation*}
|A| \neq 0 \tag{13}
\end{equation*}
$$

and know

$$
\begin{equation*}
|A| I_{n}=\operatorname{adj}(A) A \tag{14}
\end{equation*}
$$

Here, we find

$$
\begin{equation*}
A^{-1}=\frac{1}{|A|} \operatorname{adj}(A) \tag{15}
\end{equation*}
$$

Then, we can say that the inverse of A exists.

4 Cramer's rule for systems

Consider the system of linear equations

$$
\begin{equation*}
A X=B \tag{16}
\end{equation*}
$$

where A is a square matrix of order n and where B is a column vector. Under the assumption that A is invertible, there exists a unique solution which is denoted by X and defined as $X=A^{-1} B$. Using Cramer's rule, we are able to solve the above system and to compute its solution

$$
\begin{equation*}
x_{i}=\frac{\left|A_{i}\right|}{|A|}, \text { for } i=1, \ldots, n \tag{17}
\end{equation*}
$$

such that A_{i} represents a square matrix, after a change of the $i-t h$ column of the matrix A by putting the column vector B.

References

[1] N. Ravishanker and D. K. Dey, A first course in linear model theory, CRC Press, 2001
[2] D. W. Lewis, Matrix theory, World scientific, 1991
[3] V. Sundarapandian, Numerical linear algebra, PHI Learning Private Limited, 2008
[4] Babu Ram, Engineering Mathematics-I (For Wbut), Pearson Education India, 2010
[5] T.K.V. Iyengar and B. Krishna Gandhi and S. Ranganatham and M.V.S.S.N. Prasad , Engineering Mathematics Volume - II (For 2nd Year of JNTU, Anantapur), S. Chand Publishing

