Course : Algebra 3 Year : 2023/2024 Department of Computer Science

Chapter 1 : Determinants of matrices

1 Matrices and their properties

Definition 1.1 A rectangular array that is defined by

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix},$$

represents an $m \times n$ matrix where m and n are, respectively, row dimension and column dimension. The elements which are denoted by a_{ij} are real numbers for $1 \leq i \leq m$ and $1 \leq j \leq n$.

Example 1.1 Let A be an $m \times n$ matrix defined by

$$A = \left(\begin{array}{rrr} 4 & 7\\ 1 & 2\\ 0 & 8 \end{array}\right).$$

Here, we have m = 3 and n = 2.

Definition 1.2, Let $A = [a_{ij}]_{m \times n}$ be an $m \times n$ matrix and Let $B = [b_{ji}]_{n \times m}$ be an $n \times m$ matrix with $b_{ji} = a_{ij}$. Then the matrix B is called the transpose of A and denoted by A^T . **Example 1.2** Let A be a 2×3 matrix defined by

$$A = \left(\begin{array}{rrr} 1 & 3 & 4 \\ 2 & 0 & 5 \end{array}\right).$$

The transpose of A is given by

$$A^T = \left(\begin{array}{rrr} 1 & 2\\ 3 & 0\\ 4 & 5 \end{array}\right)$$

Remark 1.1 Let A be an $m \times n$ matrix. A is said to be a square matrix if we have m = n

Definition 1.3 Assume that A is a square matrix of order n and let a_{ij} be real numbers for all i, j.

- **1.** An identity matrix is an $n \times n$ matrix with $a_{ij} = 0$ for $i \neq j$ and $a_{ij} = 1$ for i = j. This type of matrices is denoted by I_n .
- **2.** If the elements of A satisfy $a_{ij} = 0$ for $i \neq j$, then A can be called a diagonal matrix.
- **3.** If $a_{ij} = 0$ for all $i \prec j$ (or $i \succ j$), then A represents a so-called lower (or upper) triangular matrix.
- **4.** If $a_{ij} = a_{ji}$ for all i, j, then we can say that A is a symmetric matrix.

Example 1.3 Let

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, B = \begin{pmatrix} 5 & 0 \\ 0 & 1 \end{pmatrix}, C = \begin{pmatrix} 5 & 6 & 7 \\ 0 & 1 & 3 \\ 0 & 0 & 2 \end{pmatrix}, D = \begin{pmatrix} 6 & 0 \\ 1 & 5 \end{pmatrix},$$

and

$$E = \begin{pmatrix} 3 & 8 & 9 & 5 \\ 8 & 1 & 2 & 4 \\ 9 & 2 & 6 & 3 \\ 5 & 4 & 3 & 1 \end{pmatrix}.$$

Thus, we can see that

- A is an identity matrix.
- B is a diagonal matrix.
- C is an upper triangular matrix.
- D is a lower triangular matrix.

E is a so-called symmetric matrix.

Theorem 1.1 Suppose that A, B and C are matrices of order $m \times n$ and that α is a scalar. Then we get that

- **a)** A + B = B + A.
- **b)** (A+B) + C = A + (B+C).
- c) $\alpha(A+B) = \alpha A + \alpha B$.
- **d)** $(A+B)^T = A^T + B^T$.

Theorem 1.2 We assume that A is a matrix of order $m \times n$ and that α is a scalar. Take that B and C are matrices of order $n \times q$, then

- a) A(B+C) = AB + AC.
- **b)** $\alpha(AB) = (\alpha A)B.$
- c) $(A^T)^T = A$.
- d) $(AB)^T = B^T A^T$.

Remark 1.2 Under the condition that A is a matrix of order $m \times n$, we have

$$AI_n = I_m A = A$$

2 Calculation of determinants

Definition 2.1 Assume that A is a square matrix of order n and that the elements of A, denoted by a_{ij} , are real numbers for all i, j. Let $|M_{ij}|$ be the minor of the matrix A corresponding to a_{ij} . Then the determinant of A is given by

$$|A| = \sum_{i=1}^{n} a_{ij} (-1)^{i+j} |M_{ij}|, \qquad (1)$$

with j is fixed.

Example 2.1 Consider

$$A = \begin{pmatrix} 3 & 2 \\ 1 & 2 \end{pmatrix}, and B = \begin{pmatrix} 3 & 4 & 1 \\ 2 & 6 & 7 \\ 3 & 0 & 4 \end{pmatrix}.$$

It is obvious that A and B represent square matrices and their determinants are given by

$$|A| = 4$$

$$|B| = 3 \begin{vmatrix} 6 & 7 \\ 0 & 4 \end{vmatrix} - 4 \begin{vmatrix} 2 & 7 \\ 3 & 4 \end{vmatrix} + 1 \begin{vmatrix} 2 & 6 \\ 3 & 0 \end{vmatrix},$$

= 106.

Proposition 2.1 Consider two square matrices of the same order, denoted by A and B, and a scalar α . Assume that a_{ij} are the elements of A. Then the following statements are true.

- **a)** |AB| = |A||B|.
- **b)** $|A| = \prod_{i=1}^{n} a_{ii}$, in the case where A defines a lower or an upper triangular matrix and in the case where A represents a diagonal matrix of order n.
- c) $|\alpha A| = \alpha^n |A|$.
- d) $|A| = |A^T|$.
- e) $|I_n + DC| = |I_m + CD|$, in the case where C is a matrix of order $m \times n$, and where D is a matrix of order $n \times m$.
- **f)** |A| = 0 in the case where there exists a column or a row of zeros

3 Invertible matrices

Definition 3.1 We say that B is the inverse of an $n \times n$ matrix A in the case where B is an $n \times n$ matrix satisfying $BA = I_n$ and $AB = I_n$ such that the inverse of A is represented by A^{-1} .

Proposition 3.1 Suppose that A is a square matrix of order n. Then we have

$$|A|I_n = Aadj(A) = adj(A)A,$$
(2)

where

$$adj(A) = C^T, (3)$$

with

$$C_{ij} = (-1)^{i+j} |M_{ij}|. (4)$$

Remark 3.1 Let A be an $n \times n$ matrix and let $|A| \neq 0$. Thus, we can say that the inverse of A exists and is defined as

$$A^{-1} = \frac{1}{|A|} a dj(A).$$
(5)

Dr. Ahlem Nemer

Example 3.1 Find the inverse of A in the case where

$$A = \left(\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array}\right),$$

 $and \ where$

$$A = \left(\begin{array}{rrrr} 3 & 4 & 1 \\ 5 & 6 & 7 \\ 0 & 1 & 2 \end{array}\right).$$

1) Under the condition that $a_{11}a_{22} - a_{21}a_{12} \neq 0$, A^{-1} exists with

$$A^{-1} = \frac{1}{a_{11}a_{22} - a_{21}a_{12}} \begin{pmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{pmatrix}.$$

2) We have

$$|A| = 3 \begin{vmatrix} 6 & 7 \\ 1 & 2 \end{vmatrix} - 4 \begin{vmatrix} 5 & 7 \\ 0 & 2 \end{vmatrix} + 1 \begin{vmatrix} 5 & 6 \\ 0 & 1 \end{vmatrix},$$

= -20.

We note that $|A| \neq 0$, then the inverse of A is

$$A^{-1} = -\frac{1}{20} \begin{pmatrix} 5 & -7 & 22 \\ -10 & 6 & -16 \\ 5 & -3 & -2 \end{pmatrix},$$

 $such\ that$

$$adj(A) = \begin{pmatrix} 5 & -10 & 5 \\ -7 & 6 & -3 \\ 22 & -16 & -2 \end{pmatrix}.$$

Theorem 3.1 Assume that A is a matrix and A^{-1} exists. Then we can say that A^{-1} is unique.

Proof : We suppose that A_1 and A_2 are the inverses of A. Here, we can take

$$A_1 A = I_n, \text{ and } A A_1 = I_n, \tag{6}$$

with

$$A_2A = I_n, \text{ and } AA_2 = I_n. \tag{7}$$

This leads to

$$A_2 = I_n A_2$$

= $(A_1 A) A_2$
= $A_1 (A A_2)$
= $A_1 I_n$
= A_1

Dr. Ahlem Nemer

Then, we deduce that

$$A_2 = A_1, \tag{8}$$

which means that A^{-1} is unique.

Theorem 3.2 Let A be a square matrix of order n. We can say that the matrix A is invertible if and only if the determinant of A is not equal to zero.

Proof :

a) Under the assumptions that the inverse of A exists, we get

$$|AA^{-1}| = |A||A^{-1}|. (9)$$

This leads to

$$|I| = |A||A^{-1}|. (10)$$

From the fact that |I| = 1 which represents the determinant of a diagonal matrix, we can obtain

$$1 = |A||A^{-1}|. (11)$$

In the sequel, we deduce that

 $|A| \neq 0. \tag{12}$

b) We let

 $|A| \neq 0, \tag{13}$

and know

$$|A|I_n = adj(A)A \tag{14}$$

Here, we find

$$A^{-1} = \frac{1}{|A|} a dj(A).$$
(15)

Then, we can say that the inverse of A exists.

4 Cramer's rule for systems

Consider the system of linear equations

$$AX = B, (16)$$

where A is a square matrix of order n and where B is a column vector. Under the assumption that A is invertible, there exists a unique solution which is denoted by X and defined as $X = A^{-1}B$. Using Cramer's rule, we are able to solve the above system and to compute its solution

$$x_i = \frac{|A_i|}{|A|}, \text{ for } i = 1, ..., n,$$
 (17)

such that A_i represents a square matrix, after a change of the i - th column of the matrix A by putting the column vector B.

References

- [1] N. Ravishanker and D. K. Dey, A first course in linear model theory, CRC Press, 2001
- [2] D. W. Lewis, Matrix theory, World scientific, 1991
- [3] V. Sundarapandian, Numerical linear algebra, PHI Learning Private Limited, 2008
- [4] Babu Ram, Engineering Mathematics-I (For Wbut), Pearson Education India, 2010
- [5] T.K.V. Iyengar and B. Krishna Gandhi and S. Ranganatham and M.V.S.S.N. Prasad , Engineering Mathematics Volume - II (For 2nd Year of JNTU, Anantapur), S. Chand Publishing