Physique 1 : Exercices de révision avec solution ———

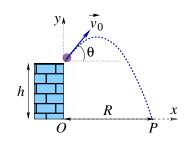
- 21 décembre 2021

Exercice 1 (\rightarrow 7 points) : Soient $\vec{u} = \vec{i} - \vec{j} + 2\vec{k}$ et $\vec{v} = -\vec{i} - 2\vec{j} + \vec{k}$ deux vecteurs de l'espace repérés par rapport à une base orthonormée directe $(\vec{i}, \vec{j}, \vec{k})$. Calculer :

- a) leur produit scalaire $\vec{u} \cdot \vec{v}$.
- b) leurs modules u et v.
- c) la projection orthogonale (إسقاط عمودي) u_v de \vec{u} sur \vec{v} .
- **d)** le produit vectoriel $\vec{u} \times \vec{v}$.
- e) l'aire (مساحة) \mathcal{A} du triangle construit sur \vec{u} et \vec{v} .
- f) le produit mixte $(\vec{u} \times \vec{v}) \cdot \vec{w}$ avec $\vec{w} = -\vec{k}$.
- g) les vecteurs \vec{w} , \vec{u} et \vec{v} pris dans cette ordre forment-ils un trièdre direct ou indirect? Justifiez votre réponse.

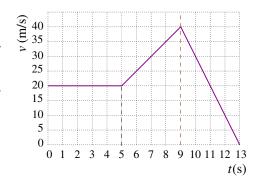
Exercice 2 (\rightarrow 5 points):

Un projectile est lancé depuis le toit d'un bâtiment (من سطح مبنى) de hauteur h avec une vitesse initiale \vec{v}_0 faisant un angle θ avec l'horizontale (figure ci-contre). Le projectile retombe et touche le sol au point P. a) Établir l'expression (R عبارة R mesurée par rapport au point O(R = OP). b) Montrez que pour h = 0, l'expression établie en a) se réduit à $R = v_0^2 \sin 2\theta/g$, c'est-à-dire à celle de la portée horizontale.



Exercice 3 (\rightarrow 6 points):

Le graphique ci-contre représente (عثل الرسم البياني المقابل) la vitesse en fonction du temps d'un mobile (جوال) en mouvement rectiligne. Le mouvement comprend 3 phases (ثلاث مراحل) : $[0\,\mathrm{s},\,5\,\mathrm{s}]$; $[5\,\mathrm{s},\,9\,\mathrm{s}]$ et $[9\,\mathrm{s},\,13\,\mathrm{s}]$. a) Par simple lecture du graphe, donnez les valeurs de la vitesse $v_0,\,v_5$, v_9 et v_{13} aux instants respectifs $t_0=0\,\mathrm{s},\,t_5=5\,\mathrm{s},\,t_9=9\,\mathrm{s}$ et $t_{13}=13\,\mathrm{s}$. b) Quelle est la nature du mouvement (طبيعة الحركة) pour chacune des trois phases? c) Calculez la distance parcourue par le mobile durant la troisième phase.



Question (\rightarrow 2 points): P et R sont deux grandeurs physiques dimensionnelles et possèdent la même dimension. Dire, en justifiant, si les opérations suivantes sont possibles ou impossibles : **a**) P - R; **b**) $P - \sqrt{R}$; **c**) PR; **d**) 1 - PR?

-----FiN ----- Bonne chance ---

SOLUTION

Exercice 1 (1 point par question \Longrightarrow total 7 points):

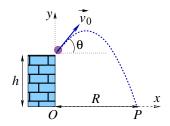
- a) $\vec{u} \cdot \vec{v} = 1 \times (-1) + (-1) \times (-2) + 2 \times 1 = -1 + 2 + 2 = 3.$ b) $u = \sqrt{1^2 + (-1)^2 + 2^2} = \sqrt{6}$; $v = \sqrt{(-1)^2 + (-2)^2 + 1^2} = \sqrt{6}.$
- c) Si θ désigne l'angle entre \vec{u} sur \vec{v} , la projection orthogonale de \vec{u} sur \vec{v} s'écrit : $u_v = u \cos \theta$. Il vient : $\vec{u} \cdot \vec{v} = uv \cos \theta = [u \cos \theta]v = u_v v \implies u_v = \vec{u} \cdot \vec{v}/v = 3/\sqrt{6}.$

d)
$$\vec{u} \times \vec{v} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & -1 & 2 \\ -1 & -2 & 1 \end{vmatrix} = 3\vec{i} - 3\vec{j} - 3\vec{k} = 3(\vec{i} - \vec{j} - \vec{k}).$$

- e) On sait que $\|\vec{u} \times \vec{v}\|$ donne l'aire du parallélogramme construit sur \vec{u} sur \vec{v} . Le triangle construit sur \vec{u} et \vec{v} est juste la moitié du parallélogramme, donc $\mathcal{A} = \|\vec{u} \times \vec{v}\|/2 = 3\sqrt{3}/2$ unités d'aire.
- f) $(\vec{u} \times \vec{v}) \cdot \vec{w} = \begin{vmatrix} 1 & -1 & 2 \\ -1 & -2 & 1 \\ 0 & 0 & -1 \end{vmatrix} = +3.$
- g) Le produit scalaire étant commutatif, on a : $(\vec{u} \times \vec{v}) \cdot \vec{w} = \vec{w} \cdot (\vec{u} \times \vec{v})$. Les trois vecteurs \vec{w} , \vec{u} et \vec{v} pris dans cet ordre forment un trièdre direct car que leur produit mixte dans le même ordre est positif.

Exercice 2 (a \rightarrow 4 points; b \rightarrow 1 points \Longrightarrow total 5 points):

a) On prend l'origine O des axes au niveau du sol. À t=0, les coordonnées du projectile sont : $x_0 = 0$ et $y_0 = h$. À uninstant t quelconque, $x = v_0 \cos \theta t$ (i) et $y = -gt^2/2 + v_0 \sin \theta t + h$ (ii). La portée est R = OP. En P on a: $y = 0 \implies -gt^2/2 + v_0 \sin \theta t + h = 0$ ou ce qui revient au même : $-gt^2 + 2v_0 \sin \theta t + 2h = 0$. La résolution en t de cette dernière équation nous donnera l'instant où le projectile attérit au sol. Les deux racines sont : $t_{\pm} = \frac{v_0 \sin \theta \pm \sqrt{v_0^2 \sin^2 \theta + 2gh}}{\sigma}$. Mais on remarque que t_+ est positif alors que t_{-} est négatif et à t_{-} le mouvement n'a pas encore commencé



- (il a commencé à t=0). On rejette donc t_- . Le projectile retombe au sol à $t=t_+$ et à cet instant $x=x_P=v_0\cos\theta\frac{v_0\sin\theta+\sqrt{v_0^2\sin^2\theta+2gh}}{g}=\frac{v_0\cos\theta v_0\sin\theta}{g}\left(1+\sqrt{1+\frac{2gh}{v_0^2\sin^2\theta}}\right)=\frac{v_0^2}{2g}\sin(2\theta)\left(1+\sqrt{1+\frac{2gh}{v_0^2\sin^2\theta}}\right)$ b) Pour h=0 on a : $R=\frac{v_0^2}{2g}\sin(2\theta)\left(1+\sqrt{1+0}\right)=v_0^2\sin(2\theta)/g$, on retrouve le résultat de la portée
- horizontale.

Exercice 3 (2 points par question \implies total 6 points):

- a) $v_0 = 20 \,\mathrm{m/s}$; $v_5 = 20 \,\mathrm{m/s}$; $v_9 = 40 \,\mathrm{m/s}$ et $v_{13} = 0 \,\mathrm{m/s}$.
- b) i- Dans la première phase [0 s, 5 s], la vitesse ne change pas (v = 20 m/s), le mouvement est donc uniforme.
- ii- Dans la deuxième phase [5 s, 9 s], la vitesse augmente avec un taux constant de 5 m/s chaque seconde, c'est un mouvement uniformément accéléré.
- iii- Dans la troisième phase [9 s, 13 s], la vitesse diminue de 10 m/s chaque seconde, c'est un mouvement uniformément décéléré.
- c) L'accélération (qui est en fait une décélération) dans la troisième phase est $a_3 = (-10 \,\mathrm{m/s})/\mathrm{s} = -10 \,\mathrm{m/s^2}$. Si $\Delta x = x(t_{13}) - x(t_9)$ désigne l'espace parcouru durant la troisième phase, on peut appliquer la relation (voir cours): $v_{13}^2 - v_9^2 = 2a_3 \Delta x$. Alors $\Delta x = (v_{13}^2 - v_9^2)/2a_3 = (0^2 - 40^2)/2(-10) = 80 \,\text{m}$, c'est la distance parcourue dans la troisième phase.

Question (1/2 point par question \implies total 2 points) : a) L'opération P - R est possible car les deux grandeurs ont même dimension; b) L'opération $P - \sqrt{R}$ est impossible car \sqrt{R} n'a pas la même dimension que P. c) L'opération PR est possible car on peut toujours multiplier des grandeurs physiques de dimensions quelconques. d) L'opération 1 - PR est impossible car PR a une dimension alors que 1 est adimensionnel.