Course : Algebra 3
Chapter 1 : Determinants of matrices

Year : 2023/2024
Batna 2 University
Department of Computer Science

Tutorial series 1

Exercise 0.1 Let $A=\left(\begin{array}{ccc}3 & 5 & 6 \\ a & 4 & 0 \\ b & 0 & 1\end{array}\right), B=\left(\begin{array}{lll}3 & 4 & 1 \\ 0 & 2 & 3 \\ 4 & 1 & 0\end{array}\right)$, and $C=\left(\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right)$.

1. Give the values of a, b under which A is a symmetric (or an upper triangular) matrix.
2. Under what conditions can we say that C is a diagonal matrix.
3. Find B^{T}.
4. Compute $|B|$, is it possible to determine B^{-1} ?

Exercise 0.2 Let

$$
A=\left(\begin{array}{lll}
5 & 6 & 7 \\
2 & 3 & 4 \\
1 & 5 & 2
\end{array}\right)
$$

Compute $|A|$, what can we deduce?
Exercise 0.3 Let

$$
A=\left(\begin{array}{ccc}
\alpha & 1 & 2 \\
0 & 2 & \alpha \\
\alpha-2 & 1 & 1
\end{array}\right)
$$

Try to get the value of α in the case where A is singular.
Exercise 0.4 Consider

$$
\begin{array}{ll}
2 x+y+3 z=3, & 3 x+2 y+9 z=4 \\
4 x+5 y+7 z=0, & 8 x+z=2 \\
y+8 z=2 & 7 x+5 y+4 z=1
\end{array}
$$

1. Rewrite the above systems in the form $A X=B$.
2. By using Cramer's rule, determine the solutions of thse systems.

Exercise 0.5 Consider

$$
\begin{array}{ll}
5 x+y=5, & x+2 y+4 z=1 \\
3 x+4 y=6, & 7 x+5 y+3 z=3 \\
& 9 x+7 y+z=4
\end{array}
$$

1. Rewrite these systems in the form $A X=B$.
2. In each case, check that A is invertible and give the inverse of A.
3. By using matrix inversion method, find the solutions of thse systems.

Exercise 0.6 A is $n \times n$ matrix.

1. Prove that $B^{2}=-B$, where $B=A-I$ and $A^{2}=A$.
2. Prove that $B^{2}=6 B$, where $B=3(A+I)$ and $A^{2}=I$.

Exercise $0.7 A$ and B are of the same order.

1. Prove that, in the case where $|A| \neq 0$,

$$
\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}
$$

2. Prove that, in the case where $|A| \neq 0$ and $|B| \neq 0$,

$$
|A B| \neq 0
$$

and

$$
(A B)^{-1}=B^{-1} A^{-1}
$$

