Sets, functions and binary relations

H.C
26 octobre 2023

1 Sets, sets operations

1.0.1 Definitions and notations

Definition 1.0.1 A set is the mathematical model for a collection of different things (objects) ;
a set contains elements or members, which can be mathematical objects of any kind : A class of
students, numbers, symbols, points in space, lines, other geometrical shapes, variables, or even
other sets.

The notation a € A stands for the statement a belongs to A (a is an element of A). The
negation of a € A is denoted by a ¢ A.
1. If A is finite, the cardinality of A is the number of its elements denoted by cardA.

2. A particular set is the empty set, denoted () which is the set containing no element.

Here’s another way to define sets : a collection of elements that satisfy a property. We then
write :

E={z,P(x)}.

Example 1.0.1
{reR/-1<z<1}=[-1,1].

Example 1.0.2 1. The set of (positive, negative and zero) integers by
Z={m-n/mneN}.={--,-3-2-1,0,1,2,3---}.

2. The set of rational numbers (ratios of integers) by Q = {§ 'p,q€Z and qF# O} .

3. The set of complex numbers : C = {xz +iy:x,y € R}.
Where we add and multiply complex numbers in the natural way, with the additional
identity that i> = —1, meaning that i is a square root of —1. If z = x +iy € C, we call x
the real part of z and y the imaginary part of z, and we call |z| = \/x% 4 y? the absolute
value, or modulus, of z.

Axiom 1.1 (Axiom of extension)Let A and B be sets. Then, A = B if and only if for all
x (x € A if and only if x € B).

Thus, two sets A and B are equal if they have same members. Two equal sets are treated as same.
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1.1 Inclusion

Definition 1.1.1 Let A and B be sets. We say that A is a subset of B (A is contained in B
or B contains A) if every member of A is a member of B. The statement Ais a subset of B is
the same as the statement : For all x (if v € A, then x € B). The notation A C B stands for the
statement A is a subset of B. Thus, A = B if and only if A C B and B C A.” The negation of
A C Bis denoted by A ¢ B it stands for the statement : There existsx/ x € A and x ¢ B).

1. Every set is a subset of itself, because : For all z(if x € A, then x € A) is a tautology
(always a true statement).

2. By convention, for any set E we have () C E.

Cardinality of 0 = || = 0.

3. If AC B and A # B, then we say that A is a proper subset of B. The notation A C B
stands for the statement A is a proper subset of B.

Proposition 1.1.1 If AC B and B C C, then A C C.

1.2 Power set of F.
Definition 1.2.1 Let E be a set. We call Power set of E, the set denoted P(F), defined by :

P(E) = {X,X C E)

By definition we have : ) € P(E) et E € P(E).
For example if £/ ={1,2,3} : P(E) = {0, {1}, {2}, {3},{1,2},{1,3},{2,3},{1,2,3}).

Remark 1.2.1 1. We have {a} C E and {a} € P(E).

2. If card E = n, then card P(E) = 2"
For E={1,2,3}, P(FE) have 2°> =8 parts.

3. The cardinality of P(0) = 1.
Partition
We call partition of a set any family F' C E such that :
1. The elements of F' are disjoint two by two (see example 1.4.1).

2. F is an overlay of E.
Example 1.2.1 1. E=N, P={2k/ keN}, I={2k+1/ keN}
F ={P, I} is a partition of E.

2. E={0,1,2,3,4,5,6,7,8}. Then the subsets : {0,1,2}, {3,5,7}, {4,6} et {8} constitute
a partition of E.
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1.3 Set Complement

Definition 1.3.1 Let A be a subset of E. We call Set Complement of A in E, and we note (4,
the set of elements of E which do not belong to A.

CA={zcE| 2¢A}.
We also note E \ A and just CA if there is no ambiguity (and sometimes also A¢orA).
Example 1.3.1 Let A=N and E =Z, then (4 = {—z/ € N}.

Let A and B be sets.

there is a unique set defined by {xr € B/ x ¢ A}. This set is denoted by B — A, and it B
difference A. Clearly, B — A is a subset of A.

1.4 Operations on sets

1.4.1 Intersection

Let A and B be sets. The set {x € A/ x € B} is denoted by AN B and it is called the
intersection of A and B. Thus, x € AN B if and only if z € A and x € B.

Proposition 1.4.1 Algebraic properties of the intersection
Let A, B,C be sets. We havethe relationships :
1. AN B = BnNA [Commutativity].
ANBCAand ANBC B.
If[CCA and CCB|, thenCC ANB.
ANA=A.
If AC B, then AN B = A.
AND =0 [absorbent element].

AN(BNC)=(ANB)NC. [Associativity] (we can therefore write AN B N C without
ambiguity).

NS S e

Example 1.4.1 If we have AN B =0, we say that the sets A and B are disjoint.
We can take as an example :

]-1,11N]0,2] =10,1], or also {x € R,2* > 5} N{x e R/ z*—4z+3 <0} = [V5,3].

1.5 Union

For A,BC E. Theset AUB={r € E/ x€A or z¢& B}iscalled the union of A and
B. Thus, x € AUB if and only if x € A or x € B.
The "or" is not exclusive : x can belong to A and B at the same time.

Proposition 1.5.1 Algebraic properties of the union.
Let A, B,C be sets. We have the relationships :

1. AU B = BU A [Commutativity].
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ACAUB and BC AN B.

If[ACC and BCC|, then AUBCC.
AUA=A.

If AC B, then AUB = B.

AU = A [Identity].

AU(BUC) = (AU B)UC. [Associativity].

NS S e e

Example 1.5.1 1. E=R, A=]-00,3], B=]|-1,5]. Then
ANB]-1,3], AUB=]-00,5 A-— B]—o0,—1]
2. E=R, A=[-3,3], B=][0,1]. Then
A\ B=[-3,0lU]1,3].
B\ A=1.
3. We call symmetric difference of A and B, and we denote by AAB the set defined by :
AAB = (AUB)\ (ANB)=(A\B)U(A\ B).

We clearly see that the symmetric difference of the sets is not commutative.

1.6 Calculation rules

Let A, B, C partsof aset E. We have :

ACB<s ANnB=A.

ACB< AUuB=B.

AN(BUC)=(ANB)UANC), AU(BNC)=(AUB)N(AUC).
CC4 =Aandso A C B« (8 c (4.

CanB — CA U CE.

CAUB _ 04 A CE.

(5 and 6 Morgan’s Laws).

AN

1.7 Cartesian product of sets

Let E and F be two sets. The Cartesian product, denoted E x F', is the set of all ordered
pairs (z,y) where z € E and y € F. Hence,

ExF={(x,y)) z€EANy€EF}

Example 1.7.1 [0,1] xR={(z,y)/ 0<z<1, yeR)
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2 Function

Definition 2.0.1 A function f : E — F between sets E, F assigns to each x € E a unique
element f(x) € F . Functions are also called maps, mappings, or transformations.
A map or function of E in F associates with every element of E a unique element of F
denoted f(x).
If f is a map from E to F, and (x,y) an element of E X F verifying the relation f, we write
f: E— F
Ty

Ezxample 2.0.1 The identity function idg : E — E on a set E s the function idg : © +— x

that maps every element to itself.
Let E =R* and F = R.
We consider the relation f, given by :

(r,y) € E X F vérifiesf & y* =x
For given x there exists y1 = /T and yo = —+/x, then f is not an application.

1. The element f(x) € F is called the image of element x € E through application f.

2. E on which f is defined is called the domain of f and the set F' in which it takes its
values 1s called the range. f is an application defined on E with values in F.

3. The graphic of the application (function) f : E — F denoted by Gy :

Gy=A{(z,f(x)) e (ExF)/x e E}.

4. The equality of applications. Two applications f,qg : E — F are called equal if and
only if they have the same domain, the same codomain, the equality f = g is equivalent
to say : for allz € E, f(x) = g(x). We then note f = g.

Definition 2.0.2 The range, or tmage, of a function f : E — F is the set of values
ranf ={y € F:y= f(x) forsome x€FE}.

A function is onto if its range is all of F'; that is, if for every y € F there exists x € E such
that y = f(z).

A function is one-to-one if it maps distinct elements of E to distinct elements of F' ; that is,
if ©1,x9 € E and x1 # x4 implies that f(x1) # f(x2).

An onto function is also called a surjection, a one-to-one function an injection, and a one-
to-one, onto function a bijection.

Example 2.0.2 Consider the maps f,g and h given by :

f: R=>R, g: R_.—=R
x— x? T x?

1. Let vy, 75 € R such that f(x1) = f(x3), then 3 = 23 and so |x,| = |x3|. For xy = —2 #
xo = 2, we have f(—2) = f(2) =4, then f is an injection.
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2. Forally e Ry, 3z € R,z = \/y, such that y = f(x) = 2.
Thus, the map f is a surjection.

3. Let x1,m5 € R_ such that g(x1) = g(x2), then ¥ = 22 and therefore |z1| = |zs|, i.e.
—x1 = —x9 and therefore x1 = x5. Thus g is an injection. For x1 = —2 # x9 = 2,we
have f(—2) = f(2) =4, then f is not an injection.

4. For y = —1, the equation —1 = g(x) = z* has no solution. Thus, the map g is not a
surjection.

Composition and inverses of functions
The successive application of mappings leads to the notion of the composition of functions.

Definition 2.0.3 The composition of functions f: E — F and g : F — G, is the application
go f:E — G defined by

go f(z)=g(f(z)).
The order of application of the functions in a composition is crucial and is read from right to
left.
The composition g o f can only be defined if the domain of g includes the range of f, and the
existence of g o f does not imply that f o g even makes sense.

Example 2.0.3 Let X be the set of students in a class and f : X — N the function that maps
a student to her age. Let g : N — N be the function that adds up the digits in a number e.g.,
g(1729) = 19. If x € X s 23 years old, then (go f)(xz) =5, but (f o g)(x) makes no sense,
since students in the class are not natural numbers. Even if both g o f and f o g are defined,
they are, in general, different functions.

Let f be a map from E to F. Then f is bijective if and only if there exists a map ¢ from F' to
E such that go f = I and f o g = I . Further, then g = f~1.
Example 2.0.4 1. Let us define f,qg thus :
f o ]0,400] = ]0,+00]
T 1
g: ]0,400[— R

2.1 Image, Inverse image
Let f be a map from E to F. Let A C E and B C F. The subset
f(A) ={f(z)/ = eA}.

of F' is called the image of A under the map f.
To say that f is surjective is to say that f(F) = F.
The subset

[7(B)={z € E/ [(z) € B}.
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of F is called the inverse image of B under f.
What are f~1(F) and f~(0)?

Proposition 2.1.1 Let f be a map from E to F and A C E. Then A C f~1(f(A)). Also
A= f7Y(f(A)) for all AC E if and only if [ is injective.
Proof(See tutorial series)

Proposition 2.1.2 Let f be a map from E to F and B C F. Then f(f~%(B)) C B. Also
B = f(f~YB)) for all B C F if and only if f is surjective.

Proof(See tutorial series)

Proposition 2.1.3 Let f be a map from E to F. Let Ay and Ay be subsets of E. Then

1. f (AU Ag) = f(A1) U f(As).

2. f(A1NAy) C f(A1) N f(As).

Further, in (ii), equality holds for every pair of subsets Ay and Ay of E if and only if f is
mjective.

Lemme 2.1.1 Let f be a map from E to F'. Let Ay and Ay be subsets of E, Let By and By be
subsets of F'. Then
Al CA2 #f(Al) - f(AQ),

By CBy= f1(B)Cf(B).
Proposition 2.1.4 Let f be a map from E to F. Let By and By be subsets of F'. Then
1. 71 (BiUBy) = f~1(B1) U f(Ba).
2. f_l (Bl ﬂ BQ) — f_l(Bl) ﬂ f_l(Bz).

Example 2.1.1 Define f: R — R by f(z) = 2.
1. A=1-2,2 f(A) =1[0,4]
2. B=10,4] f~YB)=1]-2,0[U]0,2[.
3. C=]-4,00 f1CO)=0.

Example 2.1.2 We consider the map f given by :

f:r RR—= R
rT— 24 w%
1. Consider A = [—1,0][, then the image of A under the map f is :

£(4) = {2+ %/ e [—1,0[} — [3,+o0].

Indeed, for —1 < x < 0 we have 2 4 z% > 3.
2. Consider B = [3,+00[, then the inverse image of B under f is :

f(B) = {x eRrR* / 2+% € [3, —1—00[} =[-1,0[U]0,1].

1
Indeed, for 2 + % > 3 we have — > 1 which leads to 2?2 <1 and so x € [—-1,0[U]0,1].
x
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Example 2.1.3 We consider the map f: R — R given by :
f(z) = a?,

Let A =[—1,4].
1. The image of A under f :

JA) = f(~14) = {f() eR/ —1<aw<4}.

however [—1 4]:[ 1,0] U [0,4], then
f([=1,4]) = ([ 10]U[04]> f([ ,0)) U £ ([0,4]),
It’s clear that —1 < x <0 =0 < 22 <1et0<x§4:>0§x2§16.

So f([—1,4]) =[0,1] U [0, 16] = [0, 16] .
2. The inverse of A under f.

FH=14) = (=100 u f7([0,4])
e fH-L0)={zeR/ —1< f(z)<0}={0},
" FH0,4) ={z eR/ 0< f(x) <4}
It is clear that 0 < f(2) <4 0<2?<4&0< |z7| <2 —2<z <2
v £ (0.4) = 2.2

From where

FH-14) = {0} u[-2,2] = [-2,2].

3 Relations

Definition 3.0.1 A binary relation R on sets E and F' is a definite relation between elements
of E and elements of F'. We write xRy if v € E and y € F are related. If E = F , then we
call R a relation on E.

Example 3.0.1 Suppose that S is a set of students enrolled in a university and B is a set of
books in a library. We might define a relation R on S and B by :

s € S hasread b € B. In that case, sRb if and only if s has read b. Another, probably inequivalent
relation is : s € S has checked b € B out of the library.

For sets, it doesn’t matter how a relation is defined, only what elements are related.
Let us give some examples to illustrate this definition.

Example 3.0.2 1. For E =R, consider the property R, defined by :
(x,y) check property Ry if y = x* Thus, we do have R1(2,4) and Ry(—2,4) but we do
not have R1(2,2)
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2. For E =N consider the property Ro(z,y) defined by :
(z,y) checks the property Ro if x divides y, this means that there exists k € N such that
y = kx. Thus, we have R2(0,0) and R2(2,0) , but we do not have R4(0,2)

In a set E, when a pair (x,y) satisfies a relation R , we write R(z,y) or xRy.
This last notation is adopted for the following, we then say that : “x is related to y by the
relation R”.

Example 3.0.3 Let P(E) be the set of all parts of a set E. We define the relation R in P(E)

by :
VA,B € P(E), ARB < AC B,

VAe P(E), OCA, alors VA€ P(E), (RA.
Definition 3.0.2 The graph Grgr of a relation R on E and F is the subset of E x F defined

by :
Grr ={(z,y) € EX F/ xRy}

This graph contains all of the information about which elements are related.

Example 3.0.4 In E =R, we define the relation R by :
TRy & 2> +y* < 1

Then, Grr = {(x,y) € R*/ x*+y? < 1} is the inside of the unit disk.

3.1 Properties of binary relations in a set

Let E a set and let R a relation defined on E.

3.1.1 The equivalence Relation

The binary relation R is called

1. Reflexive, if Vx € F, xRzx.

2. Symmetrical, if Vo, y € £, xRy = yRux.

3. transitive, if Vo,y, 2 € E, (2Ry) A (yRz) = zRz.

4. Anti-symmetrical, if Vo,y € £, (2Ry) A (yRzx) =z =y.
5

. Equivalence relation on E, if it is reflexive, symmetrical and transitive.

Example 3.1.1 1. Equality in any set is reflexive, symmetrical and transitive.
2. The inclusion in P(FE) is reflexive, non-symmetrical, anti-symmetrical and transitive.

3. InR, the relation "...<..." is reflexive, non-symmetrical, antisymmetrical and transitive.
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3.2 The equivalence relation

Definition 3.2.1 The binary relation R on a set E is called equivalence relation if it is ré-
flezive, symmetrical and transitive.

"

Example 3.2.1 In the plane P , the relation "...is parallel..." is an equivalence relation.

Let 'R be an equivalence relation on set E. For each element € E, the set
T=R,={yeE/ 2Ry}

is called the equivalence class of © modulo R (or in relation to R), and the set

E/R ={%/ x € E} is called a factor set (or quotient set) of £ through R.

The properties of the equivalence classes. Let R be an equivalence relation on set £ and
x,y € E. Then, the following affirmations have effect :

1. z € R,,

2. R, =R, < aRy < y€§
3. Re #Ry & R, NR, =0,
4. UpepR, = E.

Partitions on a set. Let F be a non-empty set. A family of subsets {E;/ i € I} of E is
called a partition on F (or of E), if the following conditions are met :

3. l—'iEIEi:E-

Théoréme 3.2.1 For any equivalence relation R on set E, the factor set E/R ={R./ = € E}
1$ a partition of E.

Example 3.2.2 We define on set E' = 7Z the binary relation R according to the equivalence
Va,be ¥, aRb< dJkeZ: a=0b+kn,

where n € N*,  n fized.
1. Prove that R is an equivalence relation on Z.
2. Determine the structure of the classes of equivalence.
3. Form the factor set Z/R. Application : n = 3.
We have :
1. Reflexivity :NYa € Z, Jdk=0€Z: a=b+kn=a+0n, soxRx.

2. Symmetry :Ve,y € Z, aRb< Ik €Z: a=b+knso3I(—k)EZ:
b=a+ (—k)n and so bRa.

3. Transitivity : Va,b,c € Z, (aRb< 3Jky€Z: a=b+kn)ANbRce ko €Z: b=
c+kon)=a=b+kn=(c+kn)+kn=c+ (ke + ki)n =c+ ksn so aRec.
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From 1) - 3) it follows that R is an equivalence relation on Z.
Let’s determine the class of equivalence of an element x € E :
The class of equivalence of x € Z will be denoted R, or T and given by

T={y€Z/ yRz}

T={y€eZ/ y=x+kn, kelZ}
T={x+kneZ/, kel}

In the case n = 3, let us give the classes of equivalence of v = 0,x = land x = 2 , their
respective classes of equivalence are 0, land 2 and are given by :

0={3k/ keZ},

1={3k+1/ keZ},

2={3k+2/ keZ}.

Definition 3.2.2 The relation R defined above is called a congruency relation modulo n
on 7, and class a = R, is called a remainder class modulo n and its elements are called
the representatives of the class.

The usual notation :
aRb < a = b(mode n)

(a is congruent with b modulo n),and
E/R = Z/nZ.

Then

E/R=27Z/nZ={0,1,--- ,n—1}.

3.3 Order relations

Definition 3.3.1 A binary relation R on the set E is called an order relation on E, if it is
reflezive, anti-symmetrical and transitive. Usually, the relation R is denoted by "<".

With this notation, the conditions that "<" is an order relation on the set F are written :

1. reflexivity x € F = = < x;

2. asymmetry (x <yAy<zx)=2x=1y;

3. transitivity (z <yAy <z) =z <z
The pair (E,R), where E is a set and R an order relation, is called an ordered set.
Definition 3.3.2 Let (E,R) be an ordered set. The relationship R is called a total order
relation if any two elements of E are comparable i.e. For all x,y € E we have either xRy, or

yRx :
Ve,y e E, (2RyV yRx)

We also say that E is totally ordered by the relation R. Otherwise, the order is said to be
partial.

Example 3.3.1 Orders
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1. A primary example of an order is the standard order --- < --- on the natural (or real)
numbers. This order is a linear or total order, meaning that two numbers are always
comparable.

2. Another example of an order is inclusion --- C --- on the power set of some set; one
set is " smaller” than another set if it is included in it. This order is a partial order
(provided the original set has at least two elements), meaning that two subsets need not
be comparable.

So, if E = {a,b}, the inclusion in P(E) is a partial order relation. In fact we have
{a} ¢ {b} and {b} & {a}
3. On R x R, we define the relation R by

V(z,y), () e RXR, (z,y)R(z"¢) & ((z <) Ay <))
It is easy to show that 'R is an order relation. the order is not total order.

Indeed, for (x,y) = (1,2) and (2,y") = (3,1), we have 1 < 3 and 2 £ 1 therefore
(1,2) is not related to (3,1), similarly we find (3,1) is not related to (1,2).
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