Sets, functions and binary relations

$\mathfrak{H} \cdot \mathfrak{C}$

26 octobre 2023

1 Sets, sets operations

1.0.1 Definitions and notations

Definition 1.0.1 A set is the mathematical model for a collection of different things (objects); a set contains elements or members, which can be mathematical objects of any kind: A class of students, numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other sets.

The notation $a \in A$ stands for the statement a belongs to A (a is an element of A). The negation of $a \in A$ is denoted by $a \notin A$.

1. If A is finite, the cardinality of A is the number of its elements denoted by $\operatorname{card} A$.
2. A particular set is the empty set, denoted \emptyset which is the set containing no element.

Here's another way to define sets : a collection of elements that satisfy a property. We then write :

$$
E=\{x, P(x)\} .
$$

Example 1.0.1

$$
\{x \in \mathbb{R} /-1 \leq x \leq 1\}=[-1,1]
$$

Example 1.0.2 1. The set of (positive, negative and zero) integers by

$$
\mathbb{Z}=\{m-n / m, n \in \mathbb{N}\} .=\{\cdots,-3,-2,-1,0,1,2,3, \cdots\} .
$$

2. The set of rational numbers (ratios of integers) by $\mathbb{Q}=\left\{\frac{p}{q}: p, q \in \mathbb{Z}\right.$ and $\left.q \neq 0\right\}$.
3. The set of complex numbers : $\mathbb{C}=\{x+i y: x, y \in \mathbb{R}\}$.

Where we add and multiply complex numbers in the natural way, with the additional identity that $i^{2}=-1$, meaning that i is a square root of -1 . If $z=x+i y \in \mathbb{C}$, we call x the real part of z and y the imaginary part of z, and we call $|z|=\sqrt{x^{2}+y^{2}}$ the absolute value, or modulus, of z.

Axiom 1.1 (Axiom of extension)Let A and B be sets. Then, $A=B$ if and only if for all $x(x \in A$ if and only if $x \in B)$.

Thus, two sets A and B are equal if they have same members. Two equal sets are treated as same.

1.1 Inclusion

Definition 1.1.1 Let A and B be sets. We say that A is a subset of B (A is contained in B or B contains A) if every member of A is a member of B. The statement Ais a subset of B is the same as the statement : For all x (if $x \in A$, then $x \in B$). The notation $A \subseteq B$ stands for the statement A is a subset of B. Thus, $A=B$ if and only if $A \subseteq B$ and $B \subseteq A$.' The negation of $A \subseteq B$ is denoted by $A \nsubseteq B$ it stands for the statement : There exists $x / \quad x \in A$ and $x \notin B$).

1. Every set is a subset of itself, because : For all $x($ if $x \in A$, then $x \in A)$ is a tautology (always a true statement).
2. By convention, for any set E we have $\emptyset \subset E$.

Cardinality of $\emptyset=|\emptyset|=0$.
3. If $A \subseteq B$ and $A \neq B$, then we say that A is a proper subset of B . The notation $A \subset B$ stands for the statement A is a proper subset of B.

Proposition 1.1.1 If $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.

1.2 Power set of E.

Definition 1.2.1 Let E be a set. We call Power set of E, the set denoted $\mathcal{P}(E)$, defined by :

$$
\mathcal{P}(E)=\{X, X \subseteq E)
$$

By definition we have : $\emptyset \in \mathcal{P}(E)$ et $E \in \mathcal{P}(E)$.
For example if $E=\{1,2,3\}: \mathcal{P}(E)=\{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\})$.

Remark 1.2.1 1. We have $\{a\} \subset E$ and $\{a\} \in \mathcal{P}(E)$.
2. If card $E=n$, then card $\mathcal{P}(E)=2^{n}$.

For $E=\{1,2,3\}, \quad \mathcal{P}(E)$ have $2^{3}=8$ parts.
3. The cardinality of $\mathcal{P}(\emptyset)=1$.

Partition

We call partition of a set any family $F \subset E$ such that:

1. The elements of F are disjoint two by two (see example 1.4.1).
2. F is an overlay of E.

Example 1.2.1 1. $E=\mathbb{N}, P=\{2 k / \quad k \in \mathbb{N}\}, I=\{2 k+1 / \quad k \in \mathbb{N}\}$.
$F=\{P, I\}$ is a partition of E.
2. $E=\{0,1,2,3,4,5,6,7,8\}$. Then the subsets : $\{0,1,2\},\{3,5,7\},\{4,6\}$ et $\{8\}$ constitute a partition of E.

1.3 Set Complement

Definition 1.3.1 Let A be a subset of E. We call Set Complement of A in E, and we note \complement_{E}^{A}, the set of elements of E which do not belong to A.

$$
\complement_{E}^{A}=\{x \in E \mid \quad x \notin A\} .
$$

We also note $E \backslash A$ and just $C A$ if there is no ambiguity (and sometimes also A^{c} or \bar{A}).
Example 1.3.1 Let $A=\mathbb{N}$ and $E=\mathbb{Z}$, then $\mathbb{C}_{E}^{A}=\{-x / \quad x \in \mathbb{N}\}$.
Let A and B be sets.
there is a unique set defined by $\{x \in B / \quad x \notin A\}$. This set is denoted by $B-A$, and it B difference A. Clearly, $B-A$ is a subset of A.

1.4 Operations on sets

1.4.1 Intersection

Let A and B be sets. The set $\{x \in A / \quad x \in B\}$ is denoted by $A \cap B$ and it is called the intersection of A and B. Thus, $x \in A \cap B$ if and only if $x \in A$ and $x \in B$.

Proposition 1.4.1 Algebraic properties of the intersection

Let A, B, C be sets. We havethe relationships :

1. $A \cap B=B \cap A$ [Commutativity].
2. $A \cap B \subseteq A$ and $A \cap B \subseteq B$.
3. If $[C \subseteq A$ and $C \subseteq B]$, then $C \subseteq A \cap B$.
4. $A \cap A=A$.
5. If $A \subset B$, then $A \cap B=A$.
6. $A \cap \emptyset=\emptyset$ [absorbent element].
7. $A \cap(B \cap C)=(A \cap B) \cap C$. [Associativity] (we can therefore write $A \cap B \cap C$ without ambiguity).

Example 1.4.1 If we have $A \cap B=\emptyset$, we say that the sets A and B are disjoint.
We can take as an example :
$]-1,1] \cap] 0,2]=] 0,1]$, or also $\left\{x \in \mathbb{R}, x^{2} \geq 5\right\} \cap\left\{x \in \mathbb{R} / \quad x^{2}-4 x+3<0\right\}=[\sqrt{5}, 3[$.

1.5 Union

For $A, B \subset E$. The set $A \cup B=\{x \in E / \quad x \in A \quad$ or $\quad x \in B\}$ is called the union of A and B. Thus, $x \in A \cup B$ if and only if $x \in A$ or $x \in B$.
The "or" is not exclusive : x can belong to A and B at the same time.

Proposition 1.5.1 Algebraic properties of the union.

Let A, B, C be sets. We have the relationships :

1. $A \cup B=B \cup A$ [Commutativity].
2. $A \subseteq A \cup B$ and $B \subseteq A \cap B$.
3. If $[A \subseteq C$ and $B \subseteq C]$, then $A \cup B \subseteq C$.
4. $A \cup A=A$.
5. If $A \subset B$, then $A \cup B=B$.
6. $A \cup \emptyset=A$ [Identity].
7. $A \cup(B \cup C)=(A \cup B) \cup C$. [Associativity].

Example 1.5.1 1. $E=\mathbb{R}, \quad A=]-\infty, 3], \quad B=]-1,5[$. Then

$$
A \cap B]-1,3], \quad A \cup B=]-\infty, 5[\quad A-B]-\infty,-1]
$$

2. $E=\mathbb{R}, \quad A=[-3,3], \quad B=[0,1]$. Then

$$
\begin{gathered}
A \backslash B=[-3,0[\cup] 1,3] . \\
B \backslash A=\emptyset .
\end{gathered}
$$

3. We call symmetric difference of A and B, and we denote by $A \Delta B$ the set defined by :

$$
A \Delta B=(A \cup B) \backslash(A \cap B)=(A \backslash B) \cup(A \backslash B)
$$

We clearly see that the symmetric difference of the sets is not commutative.

1.6 Calculation rules

Let $A, \quad B, \quad C$ parts of a set E. We have :

1. $A \subset B \Leftrightarrow A \cap B=A$.
2. $A \subset B \Leftrightarrow A \cup B=B$.
3. $A \cap(B \cup C)=(A \cap B) \cup(A \cap C), \quad A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$.
4. $\mathrm{CC}_{E}^{A}=A$ and so $A \subset B \Leftrightarrow \mathrm{C}_{E}^{B} \subset \complement_{E}^{A}$.
5. $\complement_{E}^{A} \cap B=\complement_{E}^{A} \cup \complement_{E}^{B}$.
6. $\complement_{E}^{A \cup B}=\complement_{E}^{A} \cap \complement_{E}^{B}$.
(5 and 6 Morgan's Laws).

1.7 Cartesian product of sets

Let E and F be two sets. The Cartesian product, denoted $E \times F$, is the set of all ordered pairs (x, y) where $x \in E$ and $y \in F$. Hence,

$$
E \times F=\{(x, y) / \quad x \in E \wedge y \in F\}
$$

Example 1.7.1 $[0,1] \times \mathbb{R}=\{(x, y) / \quad 0 \leq x \leq 1, \quad y \in \mathbb{R})$

2 Function

Definition 2.0.1 A function $f: E \rightarrow F$ between sets E, F assigns to each $x \in E$ a unique element $f(x) \in F$. Functions are also called maps, mappings, or transformations.

A map or function of E in F associates with every element of E a unique element of F denoted $f(x)$.
If f is a map from E to F, and (x, y) an element of $E \times F$ verifying the relation f, we write $f: E \rightarrow F$
$x \mapsto \quad y$
Example 2.0.1 The identity function $i d_{E}: E \rightarrow E$ on a set E is the function $i d_{E}: x \mapsto x$ that maps every element to itself.
Let $E=\mathbb{R}^{+}$and $F=\mathbb{R}$.
We consider the relation f_{1} given by :

$$
(x, y) \in E \times F \quad \text { vérifies } f_{1} \Leftrightarrow y^{2}=x
$$

For given x there exists $y_{1}=\sqrt{x}$ and $y_{2}=-\sqrt{x}$, then f is not an application.

1. The element $f(x) \in F$ is called the image of element $x \in E$ through application f.
2. E on which f is defined is called the domain of f and the set F in which it takes its values is called the range. f is an application defined on E with values in F.
3. The graphic of the application (function) $f: E \rightarrow F$ denoted by G_{f} :

$$
G_{f}=\{(x, f(x)) \in(E \times F) / x \in E\}
$$

4. The equality of applications. Two applications $f, g: E \rightarrow F$ are called equal if and only if they have the same domain, the same codomain, the equality $f=g$ is equivalent to say: for all $x \in E, \quad f(x)=g(x)$. We then note $f=g$.

Definition 2.0.2 The range, or image, of a function $f: E \rightarrow F$ is the set of values

$$
\operatorname{ran} f=\{y \in F: y=f(x) \quad \text { for some } \quad x \in E\} .
$$

A function is onto if its range is all of F; that is, if for every $y \in F$ there exists $x \in E$ such that $y=f(x)$.
A function is one-to-one if it maps distinct elements of E to distinct elements of F; that is, if $x_{1}, x_{2} \in E$ and $x_{1} \neq x_{2}$ implies that $f\left(x_{1}\right) \neq f\left(x_{2}\right)$.
An onto function is also called a surjection, a one-to-one function an injection, and a one-to-one, onto function a bijection.

Example 2.0.2 Consider the maps f, g and h given by:

$$
\begin{aligned}
f: & \mathbb{R}
\end{aligned} \rightarrow \mathbb{R}_{+}, \quad g: \mathbb{R}_{-} \rightarrow \mathbb{R}, ~ x \mapsto x^{2}, \quad x \mapsto x^{2} .
$$

1. Let $x_{1}, x_{2} \in \mathbb{R}$ such that $f\left(x_{1}\right)=f\left(x_{2}\right)$, then $x_{1}^{2}=x_{2}^{2}$ and so $\left|x_{1}\right|=\left|x_{2}\right|$. For $x_{1}=-2 \neq$ $x_{2}=2$, we have $f(-2)=f(2)=4$, then f is an injection.
2. For all $y \in \mathbb{R}_{+}, \exists x \in \mathbb{R}, x=\sqrt{y}$, such that $y=f(x)=x^{2}$.

Thus, the map f is a surjection.
3. Let $x_{1}, x_{2} \in \mathbb{R}_{-}$such that $g\left(x_{1}\right)=g\left(x_{2}\right)$, then $x_{1}^{2}=x_{2}^{2}$ and therefore $\left|x_{1}\right|=\left|x_{2}\right|$, i.e. $-x_{1}=-x_{2}$ and therefore $x_{1}=x_{2}$. Thus g is an injection. For $x_{1}=-2 \neq x_{2}=2$, we have $f(-2)=f(2)=4$, then f is not an injection.
4. For $y=-1$, the equation $-1=g(x)=x^{2}$ has no solution. Thus, the map g is not a surjection.

Composition and inverses of functions

The successive application of mappings leads to the notion of the composition of functions.
Definition 2.0.3 The composition of functions $f: E \rightarrow F$ and $g: F \rightarrow G$, is the application $g \circ f: E \rightarrow G$ defined by

$$
g \circ f(x)=g(f(x)) .
$$

The order of application of the functions in a composition is crucial and is read from right to left.
The composition $g \circ f$ can only be defined if the domain of g includes the range of f, and the existence of $g \circ f$ does not imply that $f \circ g$ even makes sense.

Example 2.0.3 Let X be the set of students in a class and $f: X \rightarrow \mathbb{N}$ the function that maps a student to her age. Let $g: \mathbb{N} \rightarrow \mathbb{N}$ be the function that adds up the digits in a number e.g., $g(1729)=19$. If $x \in X$ is 23 years old, then $(g \circ f)(x)=5$, but $(f \circ g)(x)$ makes no sense, since students in the class are not natural numbers. Even if both $g \circ f$ and $f \circ g$ are defined, they are, in general, different functions.

Let f be a map from E to F. Then f is bijective if and only if there exists a map g from F to E such that $g \circ f=I_{E}$ and $f \circ g=I_{F}$. Further, then $g=f^{-1}$.
Example 2.0.4 1. Let us define f, g thus :

$$
\begin{array}{lll}
f: &] 0,+\infty[\rightarrow &] 0,+\infty[\\
& x \longmapsto & \frac{1}{x} . \\
g: &] 0,+\infty[\rightarrow & \mathbb{R} \\
& x \longmapsto & \frac{x-1}{x+1} .
\end{array}
$$

Then $g \circ f:] 0,+\infty[\rightarrow \mathbb{R}$:

$$
g \circ f(x)=g(f(x))=g\left(\frac{1}{x}\right)=\frac{\frac{1}{x}-1}{\frac{1}{x}+1}=\frac{1-x}{1+x}=-g(x) .
$$

2.1 Image, Inverse image

Let f be a map from E to F. Let $A \subset E$ and $B \subset F$. The subset

$$
f(A)=\{f(x) / \quad x \in A\} .
$$

of F is called the image of A under the map f.
To say that f is surjective is to say that $f(E)=F$.
The subset

$$
f^{-1}(B)=\{x \in E / \quad f(x) \in B\} .
$$

of E is called the inverse image of B under f.
What are $f^{-1}(F)$ and $f^{-1}(\emptyset)$?
Proposition 2.1.1 Let f be a map from E to F and $A \subseteq E$. Then $A \subseteq f^{-1}(f(A))$. Also $A=f^{-1}(f(A))$ for all $A \subseteq E$ if and only if f is injective.

Proof (See tutorial series)
Proposition 2.1.2 Let f be a map from E to F and $B \subseteq F$. Then $f\left(f^{-1}(B)\right) \subseteq B$. Also $B=f\left(f^{-1}(B)\right)$ for all $B \subseteq F$ if and only if f is surjective.

Proof(See tutorial series)
Proposition 2.1.3 Let f be a map from E to F. Let A_{1} and A_{2} be subsets of E. Then

1. $f\left(A_{1} \cup A_{2}\right)=f\left(A_{1}\right) \cup f\left(A_{2}\right)$.
2. $f\left(A_{1} \cap A_{2}\right) \subseteq f\left(A_{1}\right) \cap f\left(A_{2}\right)$.

Further, in (ii), equality holds for every pair of subsets A_{1} and A_{2} of E if and only if f is injective.

Lemme 2.1.1 Let f be a map from E to F. Let A_{1} and A_{2} be subsets of E, Let B_{1} and B_{2} be subsets of F. Then

$$
\begin{aligned}
A_{1} \subset A_{2} \Rightarrow f\left(A_{1}\right) & \subset f\left(A_{2}\right), \\
B_{1} \subset B_{2} \Rightarrow f^{-1}\left(B_{1}\right) & \subset f^{-1}\left(B_{2}\right) .
\end{aligned}
$$

Proposition 2.1.4 Let f be a map from E to F. Let B_{1} and B_{2} be subsets of F. Then

1. $f^{-1}\left(B_{1} \cup B_{2}\right)=f^{-1}\left(B_{1}\right) \cup f^{-1}\left(B_{2}\right)$.
2. $f^{-1}\left(B_{1} \cap B_{2}\right)=f^{-1}\left(B_{1}\right) \cap f^{-1}\left(B_{2}\right)$.

Example 2.1.1 Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by $f(x)=x^{2}$.

1. $A=]-2,2[\quad f(A)=[0,4[$
2. $B=] 0,4\left[\quad f^{-1}(B)=\right]-2,0[\cup] 0,2[$.
3. $C=]-4,0\left[\quad f^{-1}(C)=\emptyset\right.$.

Example 2.1.2 We consider the map f given by:

$$
\begin{aligned}
f: & \mathbb{R}^{*} \rightarrow \mathbb{R} \\
& x \longmapsto 2+\frac{1}{x^{2}} .
\end{aligned}
$$

1. Consider $A=[-1,0[$, then the image of A under the map f is:

$$
f(A)=\left\{2+\frac{1}{x^{2}} / \quad x \in[-1,0[\}=[3,+\infty[.\right.
$$

Indeed, for $-1 \leq x<0$ we have $2+\frac{1}{x^{2}} \geq 3$.
2. Consider $B=[3,+\infty[$, then the inverse image of B under f is :

$$
f^{-1}(B)=\left\{x \in \mathbb{R}^{*} \quad / \quad 2+\frac{1}{x^{2}} \in[3,+\infty[\}=[-1,0[\cup] 0,1] .\right.
$$

Indeed, for $2+\frac{1}{x^{2}} \geq 3$ we have $\frac{1}{x^{2}} \geq 1$ which leads to $x^{2} \leq 1$ and so $x \in[-1,0[\cup] 0,1]$.

Example 2.1.3 We consider the map $f: \mathbb{R} \rightarrow \mathbb{R}$ given by :

$$
f(x)=x^{2},
$$

Let $A=[-1,4]$.

1. The image of A under f :

$$
f(A)=f([-1,4])=\{f(x) \in \mathbb{R} / \quad-1 \leq x \leq 4\}
$$

however $[-1,4]=[-1,0] \cup[0,4]$, then
$f([-1,4])=f([-1,0] \cup[0,4])=f([-1,0]) \cup f([0,4])$,
It's clear that $-1 \leq x \leq 0 \Rightarrow 0 \leq x^{2} \leq 1$ et $0 \leq x \leq 4 \Rightarrow 0 \leq x^{2} \leq 16$.
So $f([-1,4])=[0,1] \cup[0,16]=[0,16]$.
2. The inverse of A under f.

$$
f^{-1}([-1,4])=f^{-1}([-1,0]) \cup f^{-1}([0,4])
$$

however

$$
f^{-1}([-1,0])=\{x \in \mathbb{R} / \quad-1 \leq f(x) \leq 0\}=\{0\}
$$

and

$$
f^{-1}([0,4])=\{x \in \mathbb{R} / \quad 0 \leq f(x) \leq 4\}
$$

It is clear that $0 \leq f(x) \leq 4 \Leftrightarrow 0 \leq x^{2} \leq 4 \Leftrightarrow 0 \leq|x| \leq 2 \Leftrightarrow-2 \leq x \leq 2$.
So

$$
f^{-1}([0,4])=[-2,2]
$$

From where

$$
f^{-1}([-1,4])=\{0\} \cup[-2,2]=[-2,2] .
$$

3 Relations

Definition 3.0.1 A binary relation \mathcal{R} on sets E and F is a definite relation between elements of E and elements of F. We write $x \mathcal{R} y$ if $x \in E$ and $y \in F$ are related. If $E=F$, then we call \mathcal{R} a relation on E.

Example 3.0.1 Suppose that S is a set of students enrolled in a university and B is a set of books in a library. We might define a relation \mathcal{R} on S and B by :
$s \in S$ has read $b \in B$. In that case, $s \mathcal{R} b$ if and only if s has read b. Another, probably inequivalent relation is $: s \in S$ has checked $b \in B$ out of the library.

For sets, it doesn't matter how a relation is defined, only what elements are related.
Let us give some examples to illustrate this definition.
Example 3.0.2 1. For $E=\mathbb{R}$, consider the property \mathcal{R}_{1} defined by :
(x, y) check property \mathcal{R}_{1} if $y=x^{2}$ Thus, we do have $\mathcal{R}_{1}(2,4)$ and $\mathcal{R}_{1}(-2,4)$ but we do not have $\mathcal{R}_{1}(2,2)$
2. For $E=\mathbb{N}$ consider the property $\mathcal{R}_{2}(x, y)$ defined by :
(x, y) checks the property \mathcal{R}_{2} if x divides y, this means that there exists $k \in \mathbb{N}$ such that $y=k x$. Thus, we have $\mathcal{R}_{2}(0,0)$ and $\mathcal{R}_{2}(2,0)$, but we do not have $\mathcal{R}_{2}(0,2)$

In a set E, when a pair (x, y) satisfies a relation \mathcal{R}, we write $\mathcal{R}(x, y)$ or $x \mathcal{R} y$.
This last notation is adopted for the following, we then say that : " x is related to y by the relation \mathcal{R} ".

Example 3.0.3 Let $P(E)$ be the set of all parts of a set E. We define the relation \mathcal{R} in $P(E)$ by:

$$
\begin{gathered}
\forall A, B \in P(E), \quad A \mathcal{R} B \Leftrightarrow A \subset B, \\
\forall A \in P(E), \quad \emptyset \subset A, \quad \text { alors } \quad \forall A \in P(E), \quad \emptyset \mathcal{R} A .
\end{gathered}
$$

Definition 3.0.2 The graph $G r_{\mathcal{R}}$ of a relation \mathcal{R} on E and F is the subset of $E \times F$ defined by :

$$
G r_{\mathcal{R}}=\{(x, y) \in E \times F / \quad x \mathcal{R} y\}
$$

This graph contains all of the information about which elements are related.
Example 3.0.4 In $E=\mathbb{R}$, we define the relation \mathcal{R} by:

$$
x \mathcal{R} y \Leftrightarrow x^{2}+y^{2}<1
$$

Then, $G r_{\mathcal{R}}=\left\{(x, y) \in \mathbb{R}^{2} / x^{2}+y^{2}<1\right\}$ is the inside of the unit disk.

3.1 Properties of binary relations in a set

Let E a set and let \mathcal{R} a relation defined on E.

3.1.1 The equivalence Relation

The binary relation \mathcal{R} is called

1. Reflexive, if $\forall x \in E, \quad x \mathcal{R} x$.
2. Symmetrical, if $\forall x, y \in E, \quad x \mathcal{R} y \Rightarrow y \mathcal{R} x$.
3. transitive, if $\forall x, y, z \in E, \quad(x \mathcal{R} y) \wedge(y \mathcal{R} z) \Rightarrow x \mathcal{R} z$.
4. Anti-symmetrical, if $\forall x, y \in E, \quad(x \mathcal{R} y) \wedge(y \mathcal{R} x) \Rightarrow x=y$.
5. Equivalence relation on \mathbf{E}, if it is reflexive, symmetrical and transitive.

Example 3.1.1 1. Equality in any set is reflexive, symmetrical and transitive.
2. The inclusion in $P(E)$ is reflexive, non-symmetrical, anti-symmetrical and transitive.
3. In \mathbb{R}, the relation " $\ldots \leq \ldots$ " is reflexive, non-symmetrical, antisymmetrical and transitive.

3.2 The equivalence relation

Definition 3.2.1 The binary relation \mathcal{R} on a set E is called equivalence relation if it réflexive, symmetrical and transitive.

Example 3.2.1 In the plane \mathcal{P}, the relation "...is parallel..." is an equivalence relation.
Let \mathcal{R} be an equivalence relation on set E . For each element $x \in E$, the set

$$
\bar{x}=\mathcal{R}_{x}=\{y \in E / \quad x \mathcal{R} y\}
$$

is called the equivalence class of x modulo \mathcal{R} (or in relation to \mathcal{R}), and the set $E / \mathcal{R}=\{\bar{x} / \quad x \in E\}$ is called a factor set (or quotient set) of E through \mathcal{R}.
The properties of the equivalence classes. Let \mathcal{R} be an equivalence relation on set E and $x, y \in E$. Then, the following affirmations have effect :

1. $x \in \mathcal{R}_{x}$,
2. $\mathcal{R}_{x}=\mathcal{R}_{y} \Leftrightarrow x \mathcal{R} y \Leftrightarrow y \in \S$
3. $\mathcal{R}_{x} \neq \mathcal{R}_{y} \Leftrightarrow \mathcal{R}_{x} \cap \mathcal{R}_{x}=\emptyset$,
4. $\sqcup_{x \in E} \mathcal{R}_{x}=E$.

Partitions on a set. Let E be a non-empty set. A family of subsets $\left\{E_{i} / \quad i \in I\right\}$ of E is called a partition on E (or of E), if the following conditions are met :

1. $i \in I \Rightarrow E_{i} \neq \emptyset$,
2. $E_{i} \neq E_{j} \Rightarrow E_{i} \cap E_{j}=\emptyset$,
3. $\sqcup_{i \in I} E_{i}=E$.

Théorème 3.2.1 For any equivalence relation \mathcal{R} on set E, the factor set $E / \mathcal{R}=\left\{\mathcal{R}_{x} / \quad x \in E\right\}$ is a partition of E.

Example 3.2.2 We define on set $E=\mathbb{Z}$ the binary relation \mathcal{R} according to the equivalence

$$
\forall a, b \in E, \quad a \mathcal{R} b \Leftrightarrow \quad \exists k \in \mathbb{Z}: \quad a=b+k n,
$$

where $n \in \mathbb{N}^{*}, \quad n$ fixed.

1. Prove that \mathcal{R} is an equivalence relation on \mathbb{Z}.
2. Determine the structure of the classes of equivalence.
3. Form the factor set \mathbb{Z} / \mathbb{R}. Application : $n=3$.

We have :

1. Reflexivity: $\forall a \in \mathbb{Z}, \quad \exists k=0 \in \mathbb{Z}: \quad a=b+k n=a+0 n$, so $x \mathcal{R} x$.
2. Symmetry : $\forall x, y \in \mathbb{Z}, \quad a \mathcal{R} b \Leftrightarrow \exists k \in \mathbb{Z}: \quad a=b+k n$ so $\exists(-k) \in \mathbb{Z}$: $b=a+(-k) n$ and so $b \mathcal{R} a$.
3. Transitivity : $\forall a, b, c \in \mathbb{Z}, \quad\left(a \mathcal{R} b \Leftrightarrow \exists k_{1} \in \mathbb{Z}: \quad a=b+k_{1} n\right) \wedge\left(b \mathcal{R} c \Leftrightarrow \exists k_{2} \in \mathbb{Z}: \quad b=\right.$ $\left.c+k_{2} n\right) \Rightarrow a=b+k_{1} n=\left(c+k_{2} n\right)+k_{1} n=c+\left(k_{2}+k_{1}\right) n=c+k_{3} n$ so $a \mathcal{R} c$.

From 1) - 3) it follows that \mathcal{R} is an equivalence relation on \mathbb{Z}.
Let's determine the class of equivalence of an element $x \in E$:
The class of equivalence of $x \in \mathbb{Z}$ will be denoted \mathcal{R}_{x} or \bar{x} and given by

$$
\begin{gathered}
\bar{x}=\{y \in \mathbb{Z} / \quad y \mathcal{R} x\} \\
\bar{x}=\{y \in \mathbb{Z} / \quad y=x+k n, \quad k \in \mathbb{Z}\} \\
\bar{x}=\{x+k n \in \mathbb{Z} /, \quad k \in \mathbb{Z}\}
\end{gathered}
$$

In the case $n=3$, let us give the classes of equivalence of $x=0, x=1$ and $x=2$, their respective classes of equivalence are $\overline{0}, \overline{1}$ and $\overline{2}$ and are given by :
$\overline{0}=\{3 k / \quad k \in \mathbb{Z}\}$,
$\overline{1}=\{3 k+1 / \quad k \in \mathbb{Z}\}$,
$\overline{2}=\{3 k+2 / \quad k \in \mathbb{Z}\}$.
Definition 3.2.2 The relation \mathcal{R} defined above is called a congruency relation modulo n on \mathbb{Z}, and class $\bar{a}=\mathcal{R}_{a}$ is called a remainder class modulo n and its elements are called the representatives of the class.

The usual notation :

$$
a \mathcal{R} b \Leftrightarrow a \equiv b(\text { mode } \quad n)
$$

(a is congruent with b modulo n), and

$$
E / \mathcal{R}=\mathbb{Z} / n \mathbb{Z}
$$

Then

$$
E / \mathcal{R}=\mathbb{Z} / n \mathbb{Z}=\{\overline{0}, \overline{1}, \cdots, \overline{n-1}\} .
$$

3.3 Order relations

Definition 3.3.1 A binary relation \mathcal{R} on the set E is called an order relation on E, if it is reflexive, anti-symmetrical and transitive. Usually, the relation \mathcal{R} is denoted by " \leq ".

With this notation, the conditions that " \leq " is an order relation on the set E are written :

1. reflexivity $x \in E \Rightarrow x \leq x$;
2. asymmetry $(x \leq y \wedge y \leq x) \Rightarrow x=y$;
3. transitivity $(x \leq y \wedge y \leq z) \Rightarrow x \leq z$.

The pair (E, \mathcal{R}), where E is a set and \mathcal{R} an order relation, is called an ordered set.
Definition 3.3.2 Let (E, \mathcal{R}) be an ordered set. The relationship \mathcal{R} is called a total order relation if any two elements of E are comparable i.e. For all $x, y \in E$ we have either $x \mathcal{R} y$, or $y \mathcal{R} x$:

$$
\forall x, y \in E, \quad(x \mathcal{R} y \vee y \mathcal{R} x)
$$

We also say that E is totally ordered by the relation \mathcal{R}. Otherwise, the order is said to be partial.

Example 3.3.1 Orders

1. A primary example of an order is the standard order $\cdots \leq \cdots$ on the natural (or real) numbers. This order is a linear or total order, meaning that two numbers are always comparable.
2. Another example of an order is inclusion $\cdots \subset \cdots$ on the power set of some set; one set is "smaller" than another set if it is included in it. This order is a partial order (provided the original set has at least two elements), meaning that two subsets need not be comparable.
So, if $E=\{a, b\}$, the inclusion in $P(E)$ is a partial order relation. In fact we have $\{a\} \nsubseteq\{b\} \quad$ and $\quad\{b\} \nsubseteq\{a\}$
3. On $\mathbb{R} \times \mathbb{R}$, we define the relation \mathcal{R} by

$$
\forall(x, y),\left(x^{\prime}, y^{\prime}\right) \in \mathbb{R} \times \mathbb{R},(x, y) \mathcal{R}\left(x^{\prime}, y^{\prime}\right) \Leftrightarrow\left(\left(x \leq x^{\prime}\right) \wedge\left(y \leq y^{\prime}\right)\right)
$$

It is easy to show that \mathcal{R} is an order relation. the order is not total order.
Indeed, for $(x, y)=(1,2)$ and $\left(x^{\prime}, y^{\prime}\right)=(3,1)$, we have $1 \leq 3$ and $2 \not \leq 1$ therefore $(1,2)$ is not related to $(3,1)$, similarly we find $(3,1)$ is not related to $(1,2)$.

