Sets, functions and binary relations

$\mathfrak{H.C}$

26 octobre 2023

1 Sets, sets operations

1.0.1 Definitions and notations

Definition 1.0.1 A set is the mathematical model for a collection of different things (objects); a set contains elements or members, which can be mathematical objects of any kind : A class of students, numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other sets.

The notation $a \in A$ stands for the statement a belongs to A (a is an element of A). The negation of $a \in A$ is denoted by $a \notin A$.

1. If A is finite, the cardinality of A is the number of its elements denoted by cardA.

2. A particular set is the empty set, denoted \emptyset which is the set containing no element.

Here's another way to define sets : a collection of elements that satisfy a property. We then write :

$$E = \{x, P(x)\}.$$

Example 1.0.1

$$\{x \in \mathbb{R} / -1 \le x \le 1\} = [-1, 1]$$

Example 1.0.2 1. The set of (positive, negative and zero) integers by

$$\mathbb{Z} = \{m - n/m, n \in \mathbb{N}\} = \{\cdots, -3, -2, -1, 0, 1, 2, 3, \cdots\}.$$

2. The set of rational numbers (ratios of integers) by $\mathbb{Q} = \left\{ \frac{p}{q} : p, q \in \mathbb{Z} \text{ and } q \neq 0 \right\}$.

3. The set of complex numbers : $\mathbb{C} = \{x + iy : x, y \in \mathbb{R}\}$. Where we add and multiply complex numbers in the natural way, with the additional identity that $i^2 = -1$, meaning that i is a square root of -1. If $z = x + iy \in \mathbb{C}$, we call x the real part of z and y the imaginary part of z, and we call $|z| = \sqrt{x^2 + y^2}$ the absolute value, or modulus, of z.

Axiom 1.1 (Axiom of extension) Let A and B be sets. Then, A = B if and only if for all $x \ (x \in A \text{ if and only if } x \in B)$.

Thus, two sets A and B are equal if they have same members. Two equal sets are treated as same.

1.1 Inclusion

Definition 1.1.1 Let A and B be sets. We say that A is a **subset of** B (A is contained in B or B contains A) if every member of A is a member of B. The statement A is a subset of B is the same as the statement : For all $x(if x \in A, then x \in B)$. The notation $A \subseteq B$ stands for the statement A is a subset of B. Thus, A = B if and only if $A \subseteq B$ and $B \subseteq A$.' The negation of $A \subseteq B$ is denoted by $A \not\subseteq B$ it stands for the statement : There exists $x/x \in A$ and $x \notin B$).

- 1. Every set is a subset of itself, because : For all x (if $x \in A$, then $x \in A$) is a tautology (always a true statement).
- 2. By convention, for any set E we have $\emptyset \subset E$.

Cardinality of $\emptyset = |\emptyset| = 0$.

3. If $A \subseteq B$ and $A \neq B$, then we say that A is a proper subset of B. The notation $A \subset B$ stands for the statement A is a proper subset of B.

Proposition 1.1.1 If $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.

1.2 Power set of E.

Definition 1.2.1 Let E be a set. We call Power set of E, the set denoted $\mathcal{P}(E)$, defined by :

$$\mathcal{P}(E) = \{X, X \subseteq E\}$$

By definition we have : $\emptyset \in \mathcal{P}(E)$ et $E \in \mathcal{P}(E)$. For example if $E = \{1, 2, 3\} : \mathcal{P}(E) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\})$.

Remark 1.2.1 *1.* We have $\{a\} \subset E$ and $\{a\} \in \mathcal{P}(E)$.

- 2. If card E = n, then card $\mathcal{P}(E) = 2^{n}$. For $E = \{1, 2, 3\}$, $\mathcal{P}(E)$ have $2^{3} = 8$ parts.
- 3. The cardinality of $\mathcal{P}(\emptyset) = 1$.

Partition

We call partition of a set any family $F \subset E$ such that :

- 1. The elements of F are disjoint two by two (see example 1.4.1).
- 2. F is an overlay of E.

Example 1.2.1 *1.* $E = \mathbb{N}$, $P = \{2k | k \in \mathbb{N}\}$, $I = \{2k + 1 | k \in \mathbb{N}\}$. $F = \{P, I\}$ is a partition of E.

2. $E = \{0, 1, 2, 3, 4, 5, 6, 7, 8\}$. Then the subsets : $\{0, 1, 2\}$, $\{3, 5, 7\}$, $\{4, 6\}$ et $\{8\}$ constitute a partition of E.

1.3 Set Complement

Definition 1.3.1 Let A be a subset of E. We call Set Complement of A in E, and we note C_E^A , the set of elements of E which do not belong to A.

$$\mathbf{C}_E^A = \left\{ x \in E | \quad x \notin A \right\}.$$

We also note $E \setminus A$ and just CA if there is no ambiguity (and sometimes also $A^c or \overline{A}$).

Example 1.3.1 Let $A = \mathbb{N}$ and $E = \mathbb{Z}$, then $\mathcal{C}_E^A = \{-x \mid x \in \mathbb{N}\}$.

Let A and B be sets.

there is a unique set defined by $\{x \in B \mid x \notin A\}$. This set is denoted by B - A, and it B difference A. Clearly, B - A is a subset of A.

1.4 Operations on sets

1.4.1 Intersection

Let A and B be sets. The set $\{x \in A \mid x \in B\}$ is denoted by $A \cap B$ and it is called the intersection of A and B. Thus, $x \in A \cap B$ if and only if $x \in A$ and $x \in B$.

Proposition 1.4.1 Algebraic properties of the intersection

Let A, B, C be sets. We have the relationships :

- 1. $A \cap B = B \cap A$ [Commutativity].
- 2. $A \cap B \subseteq A$ and $A \cap B \subseteq B$.
- 3. If $[C \subseteq A \text{ and } C \subseteq B]$, then $C \subseteq A \cap B$.
- 4. $A \cap A = A$.
- 5. If $A \subset B$, then $A \cap B = A$.
- 6. $A \cap \emptyset = \emptyset$ [absorbent element].
- 7. $A \cap (B \cap C) = (A \cap B) \cap C$. [Associativity] (we can therefore write $A \cap B \cap C$ without ambiguity).

Example 1.4.1 If we have $A \cap B = \emptyset$, we say that the sets A and B are disjoint.

We can take as an example :

 $]-1,1] \cap]0,2] =]0,1], or also \{x \in \mathbb{R}, x^2 \ge 5\} \cap \{x \in \mathbb{R}/ | x^2 - 4x + 3 < 0\} = \left[\sqrt{5},3\right[.$

1.5 Union

For $A, B \subset E$. The set $A \cup B = \{x \in E \mid x \in A \text{ or } x \in B\}$ is called the union of A and B. Thus, $x \in A \cup B$ if and only if $x \in A$ or $x \in B$.

The "or" is not exclusive : x can belong to A and B at the same time.

Proposition 1.5.1 Algebraic properties of the union.

Let A, B, C be sets. We have the relationships :

1. $A \cup B = B \cup A$ [Commutativity].

2. $A \subseteq A \cup B$ and $B \subseteq A \cap B$. 3. If $[A \subseteq C \text{ and } B \subseteq C]$, then $A \cup B \subseteq C$. 4. $A \cup A = A$. 5. If $A \subset B$, then $A \cup B = B$. 6. $A \cup \emptyset = A$ [Identity]. 7. $A \cup (B \cup C) = (A \cup B) \cup C$. [Associativity].

Example 1.5.1 *1.* $E = \mathbb{R}$, $A =]-\infty, 3]$, B =]-1, 5[. Then

 $A\cap B\left]-1,3\right],\quad A\cup B=\left]-\infty,5\right[\quad A-B\left]-\infty,-1\right]$

2. $E = \mathbb{R}$, A = [-3, 3], B = [0, 1]. Then

$$A \setminus B = \left[-3, 0\right[\cup]1, 3\right].$$

$$B \setminus A = \emptyset.$$

3. We call symmetric difference of A and B, and we denote by $A\Delta B$ the set defined by :

$$A\Delta B = (A \cup B) \setminus (A \cap B) = (A \setminus B) \cup (A \setminus B).$$

We clearly see that the symmetric difference of the sets is not commutative.

1.6 Calculation rules

Let A, B, C parts of a set E. We have :

- 1. $A \subset B \Leftrightarrow A \cap B = A$.
- 2. $A \subset B \Leftrightarrow A \cup B = B$.
- 3. $A \cap (B \cup C) = (A \cap B) \cup (A \cap C), \quad A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$
- 4. $CC_E^A = A$ and so $A \subset B \Leftrightarrow C_E^B \subset C_E^A$.
- 5. $\mathbf{C}_E^{A \cap B} = \mathbf{C}_E^A \cup \mathbf{C}_E^B.$
- 6. $\mathsf{C}_E^{A \cup B} = \mathsf{C}_E^A \cap \mathsf{C}_E^B$. (5 and 6 **Morgan's Laws**).

1.7 Cartesian product of sets

Let E and F be two sets. The Cartesian product, denoted $E \times F$, is the set of all ordered pairs (x, y) where $x \in E$ and $y \in F$. Hence,

$$E \times F = \{(x, y) / x \in E \land y \in F\}$$

Example 1.7.1 $[0,1] \times \mathbb{R} = \{(x,y) | 0 \le x \le 1, y \in \mathbb{R}\}$

2 Function

Definition 2.0.1 A function $f : E \to F$ between sets E, F assigns to each $x \in E$ a unique element $f(x) \in F$. Functions are also called maps, mappings, or transformations.

A map or function of E in F associates with every element of E a unique element of F denoted f(x).

If f is a map from E to F, and (x, y) an element of $E \times F$ verifying the relation f, we write $f: E \rightarrow F$

 $x \mapsto y$

Example 2.0.1 The identity function $id_E : E \to E$ on a set E is the function $id_E : x \mapsto x$ that maps every element to itself.

Let $E = \mathbb{R}^+$ and $F = \mathbb{R}$.

We consider the relation f_1 given by :

 $(x,y) \in E \times F$ vérifies $f_1 \Leftrightarrow y^2 = x$

For given x there exists $y_1 = \sqrt{x}$ and $y_2 = -\sqrt{x}$, then f is not an application.

- 1. The element $f(x) \in F$ is called the image of element $x \in E$ through application f.
- 2. E on which f is defined is called the domain of f and the set F in which it takes its values is called the range. f is an application defined on E with values in F.
- 3. The graphic of the application (function) $f: E \to F$ denoted by G_f :

$$G_f = \{(x, f(x)) \in (E \times F) | x \in E\}.$$

4. The equality of applications. Two applications $f, g : E \to F$ are called equal if and only if they have the same domain, the same codomain, the equality f = g is equivalent to say : for all $x \in E$, f(x) = g(x). We then note f = g.

Definition 2.0.2 The range, or **image**, of a function $f: E \to F$ is the set of values

$$ranf = \{y \in F : y = f(x) \text{ for some } x \in E\}.$$

A function is **onto** if its range is all of F; that is, if for every $y \in F$ there exists $x \in E$ such that y = f(x).

A function is **one-to-one** if it maps distinct elements of E to distinct elements of F; that is, if $x_1, x_2 \in E$ and $x_1 \neq x_2$ implies that $f(x_1) \neq f(x_2)$.

An onto function is also called a *surjection*, a one-to-one function an *injection*, and a one-to-one, onto function a *bijection*.

Example 2.0.2 Consider the maps f, g and h given by :

$$f: \quad \mathbb{R} \to \mathbb{R}_+ \\ x \mapsto x^2 \quad , \qquad g: \quad \mathbb{R}_- \to \mathbb{R} \\ x \mapsto x^2 \quad , \qquad x \mapsto x^2$$

1. Let $x_1, x_2 \in \mathbb{R}$ such that $f(x_1) = f(x_2)$, then $x_1^2 = x_2^2$ and so $|x_1| = |x_2|$. For $x_1 = -2 \neq x_2 = 2$, we have f(-2) = f(2) = 4, then f is an injection.

- 2. For all $y \in \mathbb{R}_+$, $\exists x \in \mathbb{R}, x = \sqrt{y}$, such that $y = f(x) = x^2$. Thus, the map f is a surjection.
- 3. Let $x_1, x_2 \in \mathbb{R}_-$ such that $g(x_1) = g(x_2)$, then $x_1^2 = x_2^2$ and therefore $|x_1| = |x_2|$, i.e. $-x_1 = -x_2$ and therefore $x_1 = x_2$. Thus g is an injection. For $x_1 = -2 \neq x_2 = 2$, we have f(-2) = f(2) = 4, then f is not an injection.
- 4. For y = -1, the equation $-1 = g(x) = x^2$ has no solution. Thus, the map g is not a surjection.

Composition and inverses of functions

The successive application of mappings leads to the notion of the composition of functions.

Definition 2.0.3 The composition of functions $f : E \to F$ and $g : F \to G$, is the application $g \circ f : E \to G$ defined by

$$g \circ f(x) = g\left(f(x)\right).$$

The order of application of the functions in a composition is crucial and is read from right to left.

The composition $g \circ f$ can only be defined if the domain of g includes the range of f, and the existence of $g \circ f$ does not imply that $f \circ g$ even makes sense.

Example 2.0.3 Let X be the set of students in a class and $f: X \to \mathbb{N}$ the function that maps a student to her age. Let $g: \mathbb{N} \to \mathbb{N}$ be the function that adds up the digits in a number e.g., g(1729) = 19. If $x \in X$ is 23 years old, then $(g \circ f)(x) = 5$, but $(f \circ g)(x)$ makes no sense, since students in the class are not natural numbers. Even if both $g \circ f$ and $f \circ g$ are defined, they are, in general, different functions.

Let f be a map from E to F. Then f is bijective if and only if there exists a map g from F to E such that $g \circ f = I_E$ and $f \circ g = I_F$. Further, then $g = f^{-1}$.

Example 2.0.4 1. Let us define f, g thus : $\begin{array}{cccc}
f : &]0, +\infty[\rightarrow &]0, +\infty[\\
& x \longmapsto & \frac{1}{x}. \\
g : &]0, +\infty[\rightarrow & \mathbb{R} \\
& x \longmapsto & \frac{x-1}{x+1}. \\
\end{array}$ Then $g \circ f :]0, +\infty[\rightarrow \mathbb{R} :$ $g \circ f (x) = g (f(x)) = g \left(\frac{1}{x}\right) = \frac{\frac{1}{x} - 1}{\frac{1}{x} + 1} = \frac{1 - x}{1 + x} = -g(x).$

2.1 Image, Inverse image

Let f be a map from E to F. Let $A \subset E$ and $B \subset F$. The subset

$$f(A) = \{ f(x) / x \in A \}.$$

of F is called **the image of** A under the map f. To say that f is surjective is to say that f(E) = F. The subset

$$f^{-1}(B) = \{x \in E / \quad f(x) \in B\}$$

Proposition 2.1.1 Let f be a map from E to F and $A \subseteq E$. Then $A \subseteq f^{-1}(f(A))$. Also $A = f^{-1}(f(A))$ for all $A \subseteq E$ if and only if f is injective.

Proof(See tutorial series)

Proposition 2.1.2 Let f be a map from E to F and $B \subseteq F$. Then $f(f^{-1}(B)) \subseteq B$. Also $B = f(f^{-1}(B))$ for all $B \subseteq F$ if and only if f is surjective.

Proof(See tutorial series)

Proposition 2.1.3 Let f be a map from E to F. Let A_1 and A_2 be subsets of E. Then

1. $f(A_1 \cup A_2) = f(A_1) \cup f(A_2)$.

2. $f(A_1 \cap A_2) \subseteq f(A_1) \cap f(A_2)$.

Further, in (ii), equality holds for every pair of subsets A_1 and A_2 of E if and only if f is injective.

Lemme 2.1.1 Let f be a map from E to F. Let A_1 and A_2 be subsets of E, Let B_1 and B_2 be subsets of F. Then

$$A_1 \subset A_2 \Rightarrow f(A_1) \subset f(A_2),$$

$$B_1 \subset B_2 \Rightarrow f^{-1}(B_1) \subset f^{-1}(B_2).$$

Proposition 2.1.4 Let f be a map from E to F. Let B_1 and B_2 be subsets of F. Then

1. $f^{-1}(B_1 \cup B_2) = f^{-1}(B_1) \cup f^{-1}(B_2).$ 2. $f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2).$

Example 2.1.1 Define $f : \mathbb{R} \to \mathbb{R}$ by $f(x) = x^2$.

 $\begin{array}{ll} 1. \ A =]-2,2[& f(A) = [0,4[\\ 2. \ B =]0,4[& f^{-1}(B) =]-2,0[\cup]0,2[. \\ 3. \ C =]-4,0[& f^{-1}(C) = \emptyset. \end{array}$

Example 2.1.2 We consider the map f given by :

 $\begin{array}{rccc} f : & \mathbb{R}^* \to & \mathbb{R} \\ & x \longmapsto & 2 + \frac{1}{x^2}. \end{array}$

1. Consider A = [-1, 0], then the image of A under the map f is :

$$f(A) = \left\{ 2 + \frac{1}{x^2} / \quad x \in [-1, 0] \right\} = [3, +\infty[.$$

Indeed, for $-1 \le x < 0$ we have $2 + \frac{1}{x^2} \ge 3$.

2. Consider $B = [3, +\infty[$, then the inverse image of B under f is :

$$f^{-1}(B) = \left\{ x \in \mathbb{R}^* \ / \ 2 + \frac{1}{x^2} \in [3, +\infty[\right\} = [-1, 0[\cup]0, 1]. \right\}$$

Indeed, for $2 + \frac{1}{x^2} \ge 3$ we have $\frac{1}{x^2} \ge 1$ which leads to $x^2 \le 1$ and so $x \in [-1, 0[\cup]0, 1]$.

Example 2.1.3 We consider the map $f : \mathbb{R} \to \mathbb{R}$ given by :

$$f(x) = x^2,$$

Let A = [-1, 4].

1. The image of A under f :

$$f(A) = f([-1,4]) = \{f(x) \in \mathbb{R}/ -1 \le x \le 4\}.$$

 $\begin{array}{l} however \ [-1,4] = [-1,0] \cup [0,4], \ then \\ f \ ([-1,4]) = f \ ([-1,0] \cup [0,4]) = f \ ([-1,0]) \cup f \ ([0,4]), \\ It's \ clear \ that \ -1 \leq x \leq 0 \Rightarrow 0 \leq x^2 \leq 1 \ et \ 0 \leq x \leq 4 \Rightarrow 0 \leq x^2 \leq 16. \\ So \ f \ ([-1,4]) = [0,1] \cup [0,16] = [0,16] \,. \end{array}$

2. The inverse of A under f.

$$f^{-1}([-1,4]) = f^{-1}([-1,0]) \cup f^{-1}([0,4]).$$

however

$$f^{-1}([-1,0]) = \{x \in \mathbb{R} / -1 \le f(x) \le 0\} = \{0\},\$$

and

$$f^{-1}([0,4]) = \{x \in \mathbb{R} / 0 \le f(x) \le 4\}$$

It is clear that $0 \le f(x) \le 4 \Leftrightarrow 0 \le x^2 \le 4 \Leftrightarrow 0 \le |x| \le 2 \Leftrightarrow -2 \le x \le 2$. So

$$f^{-1}([0,4]) = [-2,2]$$

From where

$$f^{-1}([-1,4]) = \{0\} \cup [-2,2] = [-2,2].$$

3 Relations

Definition 3.0.1 A binary relation \mathcal{R} on sets E and F is a definite relation between elements of E and elements of F. We write $x\mathcal{R}y$ if $x \in E$ and $y \in F$ are related. If E = F, then we call \mathcal{R} a relation on E.

Example 3.0.1 Suppose that S is a set of students enrolled in a university and B is a set of books in a library. We might define a relation \mathcal{R} on S and B by : $s \in S$ has read $b \in B$. In that case, $s\mathcal{R}b$ if and only if s has read b. Another, probably inequivalent relation is : $s \in S$ has checked $b \in B$ out of the library.

For sets, it doesn't matter how a relation is defined, only what elements are related. Let us give some examples to illustrate this definition.

Example 3.0.2 1. For $E = \mathbb{R}$, consider the property \mathcal{R}_1 defined by : (x, y) check property \mathcal{R}_1 if $y = x^2$ Thus, we do have $\mathcal{R}_1(2, 4)$ and $\mathcal{R}_1(-2, 4)$ but we do not have $\mathcal{R}_1(2, 2)$

2. For $E = \mathbb{N}$ consider the property $\mathcal{R}_2(x, y)$ defined by : (x, y) checks the property \mathcal{R}_2 if x divides y, this means that there exists $k \in \mathbb{N}$ such that y = kx. Thus, we have $\mathcal{R}_2(0, 0)$ and $\mathcal{R}_2(2, 0)$, but we do not have $\mathcal{R}_2(0, 2)$

In a set E, when a pair (x, y) satisfies a relation \mathcal{R} , we write $\mathcal{R}(x, y)$ or $x\mathcal{R}y$. This last notation is adopted for the following, we then say that : "x is related to y by the relation \mathcal{R} ".

Example 3.0.3 Let P(E) be the set of all parts of a set E. We define the relation \mathcal{R} in P(E) by :

$$\forall A, B \in P(E), \quad A\mathcal{R}B \Leftrightarrow A \subset B,$$

$$\forall A \in P(E), \quad \emptyset \subset A, \quad alors \quad \forall A \in P(E), \quad \emptyset \mathcal{R}A$$

Definition 3.0.2 The graph $Gr_{\mathcal{R}}$ of a relation \mathcal{R} on E and F is the subset of $E \times F$ defined by :

$$Gr_{\mathcal{R}} = \{(x, y) \in E \times F / x\mathcal{R}y\}$$

This graph contains all of the information about which elements are related.

Example 3.0.4 In $E = \mathbb{R}$, we define the relation \mathcal{R} by :

 $x\mathcal{R}y \Leftrightarrow x^2 + y^2 < 1$

Then, $Gr_{\mathcal{R}} = \{(x, y) \in \mathbb{R}^2 / x^2 + y^2 < 1\}$ is the inside of the unit disk.

3.1 Properties of binary relations in a set

Let E a set and let \mathcal{R} a relation defined on E.

3.1.1 The equivalence Relation

The binary relation \mathcal{R} is called

- 1. **Reflexive**, if $\forall x \in E$, $x \mathcal{R} x$.
- 2. Symmetrical, if $\forall x, y \in E$, $x \mathcal{R} y \Rightarrow y \mathcal{R} x$.
- 3. **transitive**, if $\forall x, y, z \in E$, $(x\mathcal{R}y) \land (y\mathcal{R}z) \Rightarrow x\mathcal{R}z$.
- 4. Anti-symmetrical, if $\forall x, y \in E$, $(x\mathcal{R}y) \land (y\mathcal{R}x) \Rightarrow x = y$.
- 5. Equivalence relation on E, if it is reflexive, symmetrical and transitive.

Example 3.1.1 1. Equality in any set is reflexive, symmetrical and transitive.

- 2. The inclusion in P(E) is reflexive, non-symmetrical, anti-symmetrical and transitive.
- 3. In \mathbb{R} , the relation "... \leq ..." is reflexive, non-symmetrical, antisymmetrical and transitive.

3.2The equivalence relation

Definition 3.2.1 The binary relation \mathcal{R} on a set E is called equivalence relation if it is réflexive, symmetrical and transitive.

Example 3.2.1 In the plane \mathcal{P} , the relation "...is parallel..." is an equivalence relation.

Let \mathcal{R} be an equivalence relation on set E. For each element $x \in E$, the set

§

$$\overline{x} = \mathcal{R}_x = \{ y \in E / \quad x \mathcal{R}y \}$$

is called the equivalence class of x modulo \mathcal{R} (or in relation to \mathcal{R}), and the set $E/\mathcal{R} = \{\overline{x} \mid x \in E\}$ is called a factor set (or quotient set) of E through \mathcal{R} . The properties of the equivalence classes. Let \mathcal{R} be an equivalence relation on set E and $x, y \in E$. Then, the following affirmations have effect :

1.
$$x \in \mathcal{R}_x$$
,
2. $\mathcal{R}_x = \mathcal{R}_y \Leftrightarrow x\mathcal{R}y \Leftrightarrow y \in \S$
3. $\mathcal{R}_x \neq \mathcal{R}_y \Leftrightarrow \mathcal{R}_x \cap \mathcal{R}_x = \emptyset$,
4. $\sqcup_{x \in E} \mathcal{R}_x = E$.

Partitions on a set. Let E be a non-empty set. A family of subsets $\{E_i \mid i \in I\}$ of E is called a partition on E (or of E), if the following conditions are met :

1. $i \in I \Rightarrow E_i \neq \emptyset$, 2. $E_i \neq E_j \Rightarrow E_i \cap E_j = \emptyset$, 3. $\sqcup_{i \in I} E_i = E$.

Théorème 3.2.1 For any equivalence relation \mathcal{R} on set E, the factor set $E/\mathcal{R} = \{\mathcal{R}_x \mid x \in E\}$ is a partition of E.

Example 3.2.2 We define on set $E = \mathbb{Z}$ the binary relation \mathcal{R} according to the equivalence

 $\forall a, b \in E, \quad a\mathcal{R}b \Leftrightarrow \quad \exists k \in \mathbb{Z}: \quad a = b + kn,$

where $n \in \mathbb{N}^*$, n fixed.

- 1. Prove that \mathcal{R} is an equivalence relation on \mathbb{Z} .
- 2. Determine the structure of the classes of equivalence.
- 3. Form the factor set \mathbb{Z}/\mathbb{R} . Application : n = 3.

We have :

1. Reflexivity: $\forall a \in \mathbb{Z}, \exists k = 0 \in \mathbb{Z}: a = b + kn = a + 0n, so x \mathcal{R}x.$

- 2. Symmetry: $\forall x, y \in \mathbb{Z}$, $a\mathcal{R}b \Leftrightarrow \exists k \in \mathbb{Z}$: $a = b + kn \text{ so } \exists (-k) \in \mathbb{Z}$: b = a + (-k)n and so $b\mathcal{R}a$.
- 3. Transitivity: $\forall a, b, c \in \mathbb{Z}$, $(a\mathcal{R}b \Leftrightarrow \exists k_1 \in \mathbb{Z}: a = b + k_1n) \land (b\mathcal{R}c \Leftrightarrow \exists k_2 \in \mathbb{Z}:$ b = $(c + k_2 n) \Rightarrow a = b + k_1 n = (c + k_2 n) + k_1 n = c + (k_2 + k_1) n = c + k_3 n \text{ so } a\mathcal{R}c.$

From 1) - 3) it follows that \mathcal{R} is an equivalence relation on \mathbb{Z} . Let's determine the class of equivalence of an element $x \in E$: The class of equivalence of $x \in \mathbb{Z}$ will be denoted \mathcal{R}_x or \overline{x} and given by

$$\overline{x} = \{ y \in \mathbb{Z} / y \mathcal{R}x \}$$
$$\overline{x} = \{ y \in \mathbb{Z} / y = x + kn, k \in \mathbb{Z} \}$$
$$\overline{x} = \{ x + kn \in \mathbb{Z} / , k \in \mathbb{Z} \}$$

In the case n = 3, let us give the classes of equivalence of x = 0, x = 1 and x = 2, their respective classes of equivalence are $\overline{0}$, $\overline{1}$ and $\overline{2}$ and are given by : $\overline{0} = \{3k/ \quad k \in \mathbb{Z}\},$ $\overline{1} = \{3k + 1/ \quad k \in \mathbb{Z}\},$ $\overline{2} = \{3k + 2/ \quad k \in \mathbb{Z}\}.$

Definition 3.2.2 The relation \mathcal{R} defined above is called a **congruency relation modulo** n on \mathbb{Z} , and class $\overline{a} = \mathcal{R}_a$ is called a **remainder class modulo** n and its elements are called the representatives of the class.

The usual notation :

$$a\mathcal{R}b \Leftrightarrow a \equiv b(mode \quad n)$$

(a is congruent with b modulo n), and

$$E/\mathcal{R} = \mathbb{Z}/n\mathbb{Z}.$$

Then

$$E/\mathcal{R} = \mathbb{Z}/n\mathbb{Z} = \left\{\overline{0}, \overline{1}, \cdots, \overline{n-1}\right\}.$$

3.3 Order relations

Definition 3.3.1 A binary relation \mathcal{R} on the set E is called an order relation on E, if it is reflexive, anti-symmetrical and transitive. Usually, the relation \mathcal{R} is denoted by " \leq ".

With this notation, the conditions that " \leq " is an order relation on the set E are written :

- 1. reflexivity $x \in E \Rightarrow x \leq x$;
- 2. asymmetry $(x \le y \land y \le x) \Rightarrow x = y;$
- 3. transitivity $(x \le y \land y \le z) \Rightarrow x \le z$.

The pair (E, \mathcal{R}) , where E is a set and \mathcal{R} an order relation, is called an ordered set.

Definition 3.3.2 Let (E, \mathcal{R}) be an ordered set. The relationship \mathcal{R} is called a **total order** relation if any two elements of E are comparable i.e. For all $x, y \in E$ we have either $x\mathcal{R}y$, or $y\mathcal{R}x$:

$$\forall x, y \in E, \quad (x\mathcal{R}y \lor y\mathcal{R}x)$$

We also say that E is totally ordered by the relation \mathcal{R} . Otherwise, the order is said to be *partial*.

Example 3.3.1 Orders

- 1. A primary example of an order is the standard order $\dots \leq \dots$ on the natural (or real) numbers. This order is a linear or total order, meaning that two numbers are always comparable.
- 2. Another example of an order is inclusion $\cdots \subset \cdots$ on the power set of some set; one set is " smaller" than another set if it is included in it. This order is a partial order (provided the original set has at least two elements), meaning that two subsets need not be comparable.

So, if $E = \{a, b\}$, the inclusion in P(E) is a partial order relation. In fact we have $\{a\} \nsubseteq \{b\}$ and $\{b\} \nsubseteq \{a\}$

3. On $\mathbb{R} \times \mathbb{R}$, we define the relation \mathcal{R} by

$$\forall (x,y), (x',y') \in \mathbb{R} \times \mathbb{R}, (x,y)\mathcal{R}(x',y') \Leftrightarrow ((x \le x') \land (y \le y'))$$

It is easy to show that \mathcal{R} is an order relation. the order is not total order. Indeed, for (x, y) = (1, 2) and (x', y') = (3, 1), we have $1 \leq 3$ and $2 \nleq 1$ therefore (1, 2) is not related to (3, 1), similarly we find (3, 1) is not related to (1, 2).