
Sets, functions and binary relations
H.C

26 octobre 2023

1 Sets, sets operations
1.0.1 Definitions and notations

Definition 1.0.1 A set is the mathematical model for a collection of different things (objects) ;
a set contains elements or members, which can be mathematical objects of any kind : A class of
students, numbers, symbols, points in space, lines, other geometrical shapes, variables, or even
other sets.

The notation a ∈ A stands for the statement a belongs to A (a is an element of A). The
negation of a ∈ A is denoted by a /∈ A.

1. If A is finite, the cardinality of A is the number of its elements denoted by cardA.
2. A particular set is the empty set, denoted ∅ which is the set containing no element.

Here’s another way to define sets : a collection of elements that satisfy a property. We then
write :

E = {x, P (x)} .

Example 1.0.1
{x ∈ R/− 1 ≤ x ≤ 1} = [−1, 1] .

Example 1.0.2 1. The set of (positive, negative and zero) integers by

Z = {m− n/m, n ∈ N} . = {· · · ,−3,−2,−1, 0, 1, 2, 3, · · · } .

2. The set of rational numbers (ratios of integers) by Q =
{

p
q

: p, q ∈ Z and q 6= 0
}
.

3. The set of complex numbers : C = {x + iy : x, y ∈ R} .
Where we add and multiply complex numbers in the natural way, with the additional
identity that i2 = −1, meaning that i is a square root of −1. If z = x+ iy ∈ C, we call x
the real part of z and y the imaginary part of z, and we call |z| =

√
x2 + y2 the absolute

value, or modulus, of z.

Axiom 1.1 (Axiom of extension)Let A and B be sets. Then, A = B if and only if for all
x (x ∈ A if and only if x ∈ B).

Thus, two sets A and B are equal if they have same members. Two equal sets are treated as same.
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1.1 Inclusion

Definition 1.1.1 Let A and B be sets. We say that A is a subset of B (A is contained in B
or B contains A) if every member of A is a member of B. The statement Ais a subset of B is
the same as the statement : For all x(if x ∈ A, then x ∈ B). The notation A ⊆ B stands for the
statement A is a subset of B. Thus, A = B if and only if A ⊆ B and B ⊆ A.’ The negation of
A ⊆ B is denoted by A * B it stands for the statement : There exists x/ x ∈ A and x /∈ B).

1. Every set is a subset of itself, because : For all x(if x ∈ A, then x ∈ A) is a tautology
(always a true statement).

2. By convention, for any set E we have ∅ ⊂ E.

Cardinality of ∅ = |∅| = 0.

3. If A ⊆ B and A 6= B, then we say that A is a proper subset of B. The notation A ⊂ B
stands for the statement A is a proper subset of B.

Proposition 1.1.1 If A ⊆ B and B ⊆ C, then A ⊆ C.

1.2 Power set of E.

Definition 1.2.1 Let E be a set. We call Power set of E, the set denoted P(E), defined by :

P(E) = {X,X ⊆ E)

By definition we have : ∅ ∈ P(E) et E ∈ P(E).
For example if E = {1, 2, 3} : P(E) = {∅, {1} , {2} , {3} , {1, 2} , {1, 3} , {2, 3} , {1, 2, 3}) .

Remark 1.2.1 1. We have {a} ⊂ E and {a} ∈ P(E).

2. If card E = n, then card P(E) = 2n.
For E = {1, 2, 3} , P(E) have 23 = 8 parts.

3. The cardinality of P(∅) = 1.

Partition
We call partition of a set any family F ⊂ E such that :

1. The elements of F are disjoint two by two (see example 1.4.1).
2. F is an overlay of E.

Example 1.2.1 1. E = N, P = {2k/ k ∈ N}, I = {2k + 1/ k ∈ N}.
F = {P, I} is a partition of E.

2. E = {0, 1, 2, 3, 4, 5, 6, 7, 8}. Then the subsets : {0, 1, 2}, {3, 5, 7}, {4, 6} et {8} constitute
a partition of E.
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1.3 Set Complement

Definition 1.3.1 Let A be a subset of E. We call Set Complement of A in E, and we note {AE,
the set of elements of E which do not belong to A.

{AE = {x ∈ E| x /∈ A} .

We also note E \ A and just {A if there is no ambiguity (and sometimes also AcorA).

Example 1.3.1 Let A = N and E = Z, then {AE = {−x/ x ∈ N} .

Let A and B be sets.
there is a unique set defined by {x ∈ B/ x /∈ A}. This set is denoted by B − A, and it B
difference A. Clearly, B − A is a subset of A.

1.4 Operations on sets

1.4.1 Intersection

Let A and B be sets. The set {x ∈ A/ x ∈ B} is denoted by A ∩ B and it is called the
intersection of A and B. Thus, x ∈ A ∩B if and only if x ∈ A and x ∈ B.

Proposition 1.4.1 Algebraic properties of the intersection
Let A,B,C be sets. We havethe relationships :

1. A ∩B = B ∩ A [Commutativity].
2. A ∩B ⊆ A and A ∩B ⊆ B.

3. If [C ⊆ A and C ⊆ B] , then C ⊆ A ∩B.
4. A ∩ A = A.

5. If A ⊂ B, then A ∩B = A.

6. A ∩ ∅ = ∅ [absorbent element].
7. A ∩ (B ∩ C) = (A ∩ B) ∩ C. [Associativity] (we can therefore write A ∩ B ∩ C without

ambiguity).

Example 1.4.1 If we have A ∩B = ∅, we say that the sets A and B are disjoint.
We can take as an example :

]−1, 1] ∩ ]0, 2] = ]0, 1], or also {x ∈ R, x2 ≥ 5} ∩ {x ∈ R/ x2 − 4x + 3 < 0} =
[√

5, 3
[
.

1.5 Union

For A,B ⊂ E. The set A∪B = {x ∈ E/ x ∈ A or x ∈ B} is called the union of A and
B. Thus, x ∈ A ∪B if and only if x ∈ A or x ∈ B.
The "or" is not exclusive : x can belong to A and B at the same time.

Proposition 1.5.1 Algebraic properties of the union.
Let A,B,C be sets. We have the relationships :

1. A ∪B = B ∪ A [Commutativity].
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2. A ⊆ A ∪B and B ⊆ A ∩B.

3. If [A ⊆ C and B ⊆ C] , then A ∪B ⊆ C.
4. A ∪ A = A.

5. If A ⊂ B, then A ∪B = B.

6. A ∪ ∅ = A [Identity].
7. A ∪ (B ∪ C) = (A ∪B) ∪ C. [Associativity].

Example 1.5.1 1. E = R, A = ]−∞, 3] , B = ]−1, 5[ . Then

A ∩B ]−1, 3] , A ∪B = ]−∞, 5[ A−B ]−∞,−1]

2. E = R, A = [−3, 3] , B = [0, 1] . Then

A \B = [−3, 0[ ∪ ]1, 3] .

B \ A = ∅.

3. We call symmetric difference of A and B, and we denote by A∆B the set defined by :

A∆B = (A ∪B) \ (A ∩B) = (A \B) ∪ (A \B).

We clearly see that the symmetric difference of the sets is not commutative.

1.6 Calculation rules

Let A, B, C parts of a set E. We have :
1. A ⊂ B ⇔ A ∩B = A.

2. A ⊂ B ⇔ A ∪B = B.

3. A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C), A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).
4. {{AE = A and so A ⊂ B ⇔ {BE ⊂ {AE.

5. {A∩BE = {AE ∪ {BE .

6. {A∪BE = {AE ∩ {BE .
(5 and 6 Morgan’s Laws).

1.7 Cartesian product of sets

Let E and F be two sets. The Cartesian product, denoted E × F , is the set of all ordered
pairs (x, y) where x ∈ E and y ∈ F . Hence,

E × F = {(x, y)/ x ∈ E ∧ y ∈ F}

Example 1.7.1 [0, 1]× R = {(x, y)/ 0 ≤ x ≤ 1, y ∈ R)
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2 Function
Definition 2.0.1 A function f : E → F between sets E,F assigns to each x ∈ E a unique
element f(x) ∈ F . Functions are also called maps, mappings, or transformations.

A map or function of E in F associates with every element of E a unique element of F
denoted f(x).
If f is a map from E to F , and (x, y) an element of E × F verifying the relation f , we write
f : E → F

x 7→ y

Example 2.0.1 The identity function idE : E → E on a set E is the function idE : x 7→ x
that maps every element to itself.
Let E = R+ and F = R.
We consider the relation f1 given by :

(x, y) ∈ E × F vérifiesf1 ⇔ y2 = x

For given x there exists y1 =
√
x and y2 = −

√
x, then f is not an application.

1. The element f(x) ∈ F is called the image of element x ∈ E through application f .
2. E on which f is defined is called the domain of f and the set F in which it takes its

values is called the range. f is an application defined on E with values in F.

3. The graphic of the application (function) f : E → F denoted by Gf :

Gf = {(x, f(x)) ∈ (E × F ) /x ∈ E} .

4. The equality of applications. Two applications f, g : E → F are called equal if and
only if they have the same domain, the same codomain, the equality f = g is equivalent
to say : for all x ∈ E, f(x) = g(x). We then note f = g.

Definition 2.0.2 The range, or image, of a function f : E → F is the set of values

ranf = {y ∈ F : y = f(x) for some x ∈ E} .

A function is onto if its range is all of F ; that is, if for every y ∈ F there exists x ∈ E such
that y = f(x).
A function is one-to-one if it maps distinct elements of E to distinct elements of F ; that is,
if x1, x2 ∈ E and x1 6= x2 implies that f(x1) 6= f(x2).
An onto function is also called a surjection, a one-to-one function an injection, and a one-
to-one, onto function a bijection.

Example 2.0.2 Consider the maps f, g and h given by :

f : R→ R+

x 7→ x2 ,
g : R− → R

x 7→ x2 .

1. Let x1, x2 ∈ R such that f(x1) = f(x2), then x2
1 = x2

2 and so |x1| = |x2|. For x1 = −2 6=
x2 = 2, we have f(−2) = f(2) = 4, then f is an injection.
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2. For all y ∈ R+,∃x ∈ R, x =
√
y, such that y = f(x) = x2.

Thus, the map f is a surjection.
3. Let x1, x2 ∈ R− such that g(x1) = g(x2), then x2

1 = x2
2 and therefore |x1| = |x2|, i.e.

−x1 = −x2 and therefore x1 = x2. Thus g is an injection. For x1 = −2 6= x2 = 2,we
have f(−2) = f(2) = 4, then f is not an injection.

4. For y = −1, the equation −1 = g(x) = x2 has no solution. Thus, the map g is not a
surjection.

Composition and inverses of functions

The successive application of mappings leads to the notion of the composition of functions.

Definition 2.0.3 The composition of functions f : E → F and g : F → G, is the application
g ◦ f : E → G defined by

g ◦ f(x) = g (f(x)) .

The order of application of the functions in a composition is crucial and is read from right to
left.
The composition g ◦ f can only be defined if the domain of g includes the range of f , and the
existence of g ◦ f does not imply that f ◦ g even makes sense.

Example 2.0.3 Let X be the set of students in a class and f : X → N the function that maps
a student to her age. Let g : N → N be the function that adds up the digits in a number e.g.,
g(1729) = 19. If x ∈ X is 23 years old, then (g ◦ f)(x) = 5, but (f ◦ g)(x) makes no sense,
since students in the class are not natural numbers. Even if both g ◦ f and f ◦ g are defined,
they are, in general, different functions.

Let f be a map from E to F . Then f is bijective if and only if there exists a map g from F to
E such that g ◦ f = IE and f ◦ g = IF . Further, then g = f−1.

Example 2.0.4 1. Let us define f, g thus :
f : ]0,+∞[→ ]0,+∞[

x 7−→ 1
x
.

g : ]0,+∞[→ R
x 7−→ x−1

x+1
.

Then g ◦ f : ]0,+∞[→ R :

g ◦ f (x) = g (f(x)) = g

(
1

x

)
=

1
x
− 1

1
x

+ 1
=

1− x

1 + x
= −g(x).

2.1 Image, Inverse image

Let f be a map from E to F . Let A ⊂ E and B ⊂ F . The subset

f(A) = {f(x)/ x ∈ A} .

of F is called the image of A under the map f .
To say that f is surjective is to say that f(E) = F .
The subset

f−1(B) = {x ∈ E/ f(x) ∈ B} .
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of E is called the inverse image of B under f .
What are f−1(F ) and f−1(∅) ?

Proposition 2.1.1 Let f be a map from E to F and A ⊆ E. Then A ⊆ f−1(f(A)). Also
A = f−1 (f(A)) for all A ⊆ E if and only if f is injective.

Proof(See tutorial series)

Proposition 2.1.2 Let f be a map from E to F and B ⊆ F . Then f (f−1(B)) ⊆ B. Also
B = f (f−1(B)) for all B ⊆ F if and only if f is surjective.

Proof(See tutorial series)

Proposition 2.1.3 Let f be a map from E to F . Let A1 and A2 be subsets of E. Then
1. f (A1 ∪ A2) = f(A1) ∪ f(A2).

2. f (A1 ∩ A2) ⊆ f(A1) ∩ f(A2).
Further, in (ii), equality holds for every pair of subsets A1 and A2 of E if and only if f is

injective.

Lemme 2.1.1 Let f be a map from E to F . Let A1 and A2 be subsets of E, Let B1 and B2 be
subsets of F . Then

A1 ⊂ A2 ⇒ f (A1) ⊂ f (A2) ,

B1 ⊂ B2 ⇒ f−1 (B1) ⊂ f−1 (B2) .

Proposition 2.1.4 Let f be a map from E to F . Let B1 and B2 be subsets of F . Then
1. f−1 (B1 ∪B2) = f−1(B1) ∪ f−1(B2).

2. f−1 (B1 ∩B2) = f−1(B1) ∩ f−1(B2).

Example 2.1.1 Define f : R→ R by f(x) = x2.
1. A = ]−2, 2[ f(A) = [0, 4[

2. B = ]0, 4[ f−1(B) = ]−2, 0[ ∪ ]0, 2[.
3. C = ]−4, 0[ f−1(C) = ∅.

Example 2.1.2 We consider the map f given by :

f : R∗ → R
x 7−→ 2 + 1

x2 .
1. Consider A = [−1, 0[, then the image of A under the map f is :

f(A) =

{
2 +

1

x2
/ x ∈ [−1, 0[

}
= [3,+∞[ .

Indeed, for −1 ≤ x < 0 we have 2 + 1
x2 ≥ 3.

2. Consider B = [3,+∞[, then the inverse image of B under f is :

f−1(B) =

{
x ∈ R∗ / 2 +

1

x2
∈ [3,+∞[

}
= [−1, 0[ ∪ ]0, 1] .

Indeed, for 2 + 1
x2 ≥ 3 we have

1

x2
≥ 1 which leads to x2 ≤ 1 and so x ∈ [−1, 0[ ∪ ]0, 1] .
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Example 2.1.3 We consider the map f : R→ R given by :

f(x) = x2,

Let A = [−1, 4] .

1. The image of A under f :

f(A) = f ([−1, 4]) = {f(x) ∈ R/ − 1 ≤ x ≤ 4} .

however [−1, 4] = [−1, 0] ∪ [0, 4], then
f ([−1, 4]) = f ([−1, 0] ∪ [0, 4]) = f ([−1, 0]) ∪ f ([0, 4]),
It’s clear that −1 ≤ x ≤ 0⇒ 0 ≤ x2 ≤ 1 et 0 ≤ x ≤ 4⇒ 0 ≤ x2 ≤ 16.
So f ([−1, 4]) = [0, 1] ∪ [0, 16] = [0, 16] .

2. The inverse of A under f .

f−1 ([−1, 4]) = f−1 ([−1, 0]) ∪ f−1 ([0, 4]) .

however
f−1 ([−1, 0]) = {x ∈ R/ − 1 ≤ f(x) ≤ 0} = {0} ,

and
f−1 ([0, 4]) = {x ∈ R/ 0 ≤ f(x) ≤ 4}

It is clear that 0 ≤ f(x) ≤ 4⇔ 0 ≤ x2 ≤ 4⇔ 0 ≤ |x| ≤ 2⇔ −2 ≤ x ≤ 2.
So

f−1 ([0, 4]) = [−2, 2]

From where
f−1 ([−1, 4]) = {0} ∪ [−2, 2] = [−2, 2] .

3 Relations
Definition 3.0.1 A binary relation R on sets E and F is a definite relation between elements
of E and elements of F . We write xRy if x ∈ E and y ∈ F are related. If E = F , then we
call R a relation on E.

Example 3.0.1 Suppose that S is a set of students enrolled in a university and B is a set of
books in a library. We might define a relation R on S and B by :
s ∈ S has read b ∈ B. In that case, sRb if and only if s has read b. Another, probably inequivalent
relation is : s ∈ S has checked b ∈ B out of the library.

For sets, it doesn’t matter how a relation is defined, only what elements are related.
Let us give some examples to illustrate this definition.

Example 3.0.2 1. For E = R, consider the property R1 defined by :
(x, y) check property R1 if y = x2 Thus, we do have R1(2, 4) and R1(−2, 4) but we do
not have R1(2, 2)

Page 8



Lecture Notes Algèbre 1

2. For E = N consider the property R2(x, y) defined by :
(x, y) checks the property R2 if x divides y, this means that there exists k ∈ N such that
y = kx. Thus, we have R2(0, 0) and R2(2, 0) , but we do not have R2(0, 2)

In a set E, when a pair (x, y) satisfies a relation R , we write R(x, y) or xRy.
This last notation is adopted for the following, we then say that : “x is related to y by the
relation R”.

Example 3.0.3 Let P (E) be the set of all parts of a set E. We define the relation R in P (E)
by :

∀A,B ∈ P (E), ARB ⇔ A ⊂ B,

∀A ∈ P (E), ∅ ⊂ A, alors ∀A ∈ P (E), ∅RA.

Definition 3.0.2 The graph GrR of a relation R on E and F is the subset of E × F defined
by :

GrR = {(x, y) ∈ E × F/ xRy}

This graph contains all of the information about which elements are related.

Example 3.0.4 In E = R, we define the relation R by :

xRy ⇔ x2 + y2 < 1

Then, GrR = {(x, y) ∈ R2/ x2 + y2 < 1} is the inside of the unit disk.

3.1 Properties of binary relations in a set

Let E a set and let R a relation defined on E.

3.1.1 The equivalence Relation

The binary relation R is called
1. Reflexive, if ∀x ∈ E, xRx.
2. Symmetrical, if ∀x, y ∈ E, xRy ⇒ yRx.
3. transitive, if ∀x, y, z ∈ E, (xRy) ∧ (yRz)⇒ xRz.
4. Anti-symmetrical, if ∀x, y ∈ E, (xRy) ∧ (yRx)⇒ x = y.

5. Equivalence relation on E, if it is reflexive, symmetrical and transitive.

Example 3.1.1 1. Equality in any set is reflexive, symmetrical and transitive.
2. The inclusion in P (E) is reflexive, non-symmetrical, anti-symmetrical and transitive.
3. In R, the relation "...≤..." is reflexive, non-symmetrical, antisymmetrical and transitive.

Page 9



Lecture Notes Algèbre 1

3.2 The equivalence relation

Definition 3.2.1 The binary relation R on a set E is called equivalence relation if it is ré-
flexive, symmetrical and transitive.

Example 3.2.1 In the plane P , the relation "...is parallel..." is an equivalence relation.

Let R be an equivalence relation on set E. For each element x ∈ E, the set

x = Rx = {y ∈ E/ xRy}

is called the equivalence class of x modulo R (or in relation to R), and the set
E/R = {x/ x ∈ E} is called a factor set (or quotient set) of E through R.
The properties of the equivalence classes. Let R be an equivalence relation on set E and
x, y ∈ E. Then, the following affirmations have effect :

1. x ∈ Rx,

2. Rx = Ry ⇔ xRy ⇔ y ∈ §
3. Rx 6= Ry ⇔ Rx ∩Rx = ∅,
4. tx∈ERx = E.

Partitions on a set. Let E be a non-empty set. A family of subsets {Ei/ i ∈ I} of E is
called a partition on E (or of E), if the following conditions are met :

1. i ∈ I ⇒ Ei 6= ∅,
2. Ei 6= Ej ⇒ Ei ∩ Ej = ∅,
3. ti∈IEi = E.

Théorème 3.2.1 For any equivalence relationR on set E, the factor set E/R = {Rx/ x ∈ E}
is a partition of E.

Example 3.2.2 We define on set E = Z the binary relation R according to the equivalence

∀a, b ∈ E, aRb⇔ ∃k ∈ Z : a = b + kn,

where n ∈ N∗, n fixed.
1. Prove that R is an equivalence relation on Z.
2. Determine the structure of the classes of equivalence.
3. Form the factor set Z/R. Application : n = 3.

We have :
1. Reflexivity : ∀a ∈ Z, ∃k = 0 ∈ Z : a = b + kn = a + 0n, so xRx.
2. Symmetry : ∀x, y ∈ Z, aRb⇔ ∃k ∈ Z : a = b + kn so ∃(−k) ∈ Z :

b = a + (−k)n and so bRa.
3. Transitivity : ∀a, b, c ∈ Z, (aRb⇔ ∃k1 ∈ Z : a = b+ k1n)∧ (bRc⇔ ∃k2 ∈ Z : b =

c + k2n)⇒ a = b + k1n = (c + k2n) + k1n = c + (k2 + k1)n = c + k3n so aRc.
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From 1) - 3) it follows that R is an equivalence relation on Z.
Let’s determine the class of equivalence of an element x ∈ E :
The class of equivalence of x ∈ Z will be denoted Rx or x and given by

x = {y ∈ Z/ yRx}

x = {y ∈ Z/ y = x + kn, k ∈ Z}

x = {x + kn ∈ Z/, k ∈ Z}

In the case n = 3, let us give the classes of equivalence of x = 0, x = 1and x = 2 , their
respective classes of equivalence are 0, 1and 2 and are given by :
0 = {3k/ k ∈ Z},
1 = {3k + 1/ k ∈ Z},
2 = {3k + 2/ k ∈ Z}.

Definition 3.2.2 The relation R defined above is called a congruency relation modulo n
on Z, and class a = Ra is called a remainder class modulo n and its elements are called
the representatives of the class.

The usual notation :
aRb⇔ a ≡ b(mode n)

(a is congruent with b modulo n),and

E/R = Z/nZ.

Then
E/R = Z/nZ =

{
0, 1, · · · , n− 1

}
.

3.3 Order relations

Definition 3.3.1 A binary relation R on the set E is called an order relation on E, if it is
reflexive, anti-symmetrical and transitive. Usually, the relation R is denoted by "≤".

With this notation, the conditions that "≤" is an order relation on the set E are written :
1. reflexivity x ∈ E ⇒ x ≤ x;

2. asymmetry (x ≤ y ∧ y ≤ x)⇒ x = y;

3. transitivity (x ≤ y ∧ y ≤ z)⇒ x ≤ z.
The pair (E,R), where E is a set and R an order relation, is called an ordered set.

Definition 3.3.2 Let (E,R) be an ordered set. The relationship R is called a total order
relation if any two elements of E are comparable i.e. For all x, y ∈ E we have either xRy, or
yRx :

∀x, y ∈ E, (xRy ∨ yRx)

We also say that E is totally ordered by the relation R. Otherwise, the order is said to be
partial.

Example 3.3.1 Orders
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1. A primary example of an order is the standard order · · · ≤ · · · on the natural (or real)
numbers. This order is a linear or total order, meaning that two numbers are always
comparable.

2. Another example of an order is inclusion · · · ⊂ · · · on the power set of some set ; one
set is " smaller" than another set if it is included in it. This order is a partial order
(provided the original set has at least two elements), meaning that two subsets need not
be comparable.
So, if E = {a, b}, the inclusion in P (E) is a partial order relation. In fact we have
{a} * {b} and {b} * {a}

3. On R× R, we define the relation R by

∀(x, y), (x′, y′) ∈ R× R, (x, y)R(x′, y′)⇔ ((x ≤ x′) ∧ (y ≤ y′))

It is easy to show that R is an order relation. the order is not total order.
Indeed, for (x, y) = (1, 2) and (x′, y′) = (3, 1), we have 1 ≤ 3 and 2 � 1 therefore
(1, 2) is not related to (3, 1), similarly we find (3, 1) is not related to (1, 2).
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