Université Batna 2

1ère année Math &INF

Socle commun Math & INF

Module: SM1

TD N°2

Exercice 1:

1) Remplir le tableau suivant: (tous les nombres sont codés sur 8 bits)

Nombre	Décimal	SVA	Cà1	Cà2
N ₁	(+34)	00100010	00100010	00100010
N ₂	(+53)	00110101	00110101	00110101
N_3	(-28)	10011100	11100011	11100100
N ₄	(-40)	10101000	11010111	11011000
N_5	(-1)	10000001	11111110	11111111

2) Calculer $N_2 + N_3$ en Cà1.

3) Calculer $N_1 + N_5$ en Cà2.

$$^{11}0^{1}0^{1}1^{1}0^{1}0^{1}0 1 0$$

$$+ 111111111$$
 $= 100100001$

4) Calculer $(+74)_{10} + (103)_{10}$ en Cà2. Que remarquez-vous?

$$\begin{array}{rrrrr}
^{1}0 & 1 & 0^{1}0^{1}1^{1}0 & 1 & 0 & + & 74 \\
+ & 0 & 1 & 1 & 0 & 0 & 1 & 1 & + & 103 \\
= & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & + & 74
\end{array}$$

Il y a un dépassement de capacité puisque si on convertie les nombres en décimal on obtient un résultat faux

Exercice 2:

- 1) On définit une représentation simplifiée de la virgule flottante comme suit : un nombre fractionnaire est représenté au total sur 12 bits :1 bit pour le signe, 4 bits pour l'exposant biaisé et 7 bits pour la mantisse.
 - Représenter $X_1 = (+8,625)_{10}$ et $X_2 = (-4,35)_{10}$ selon cette représentation.

On a
$$X_1 = (+8,625)_{10} = (+1000,101)_2 = (+0,\frac{1000101}{} \times 2^{1}).$$

$M = 1000101, E_{réel} = 4$

- Le nombre X_1 est positif alors S = 0
- Eb = $E_{réel}$ + 2^{4-1} = $4 + 2^3$ = $4 + 8 = (12)_{10} = (1100)_2$

$$-X_1 = 0 |1100|1000101$$

On a
$$X_2 = (-4,35)_{10} = (-100,01011001100...)_2 = (-0, \frac{10001011001100}{10001011001100}... \times 2^{\frac{1}{2}}).$$

$M=10001011001100, E_{réel}=3$

On remarque ici que M dépasse le nombre de bits réservés à la mantisse sur cette machine (7 bits) alors on prend seulement 7 chiffres : M = 1000101. Dans ce cas on perd un peu de la précision du nombre X_2 .

- Le nombre X_2 est négatif alors S = 1

Eb =
$$E_{réel} + 2^{4-1} = 3 + 2^3 = 3 + 8 = (11)_{10} = (1011)_2$$

- $X_2 = \begin{bmatrix} 1 & 1011 & 1000101 \end{bmatrix}$

Calculer $X_1 + X_2$ et $X_1 \div X_2$ (effectuer les opérations en binaire).

$$X_1 + X_2 = (+0,1000101 \times 2^{\bullet}) + (-0,1000101..... \times 2^{\bullet}).$$

$$= (+0,1000101 \times 2^{\bullet}) + (-0,01000101..... \times 2^{\bullet})$$

$$= (+0,01000101 \times 2^{\bullet})$$

$$= (+0,1000101 \times 2^{\bullet})$$

 $\mathbf{M} = 1000101$ (aussi on prend seulement 7 chiffres). $\mathbf{S} = \mathbf{0}$ (le résultat est positif).

Eb =
$$E_{réel} + 2^{4-1} = 3 + 2^3 = 3 + 8 = (11)_{10} = (1011)_2$$

$$X_1 + X_2 = 0 |1011|1000101|$$
 $X_1 \div X_2 = (+0,1000101 \times 2^{1}) + (-0,1000101.... \times 2^{1}).$
 $= (-1 \times 2^{1})$
 $= (-0,1 \times 2^{1})$

M = 1000000, S = 1 (le résultat est négatif), $Eb = E_{réel} + 2^{4-1} = 2 + 2^3 = 2 + 8 = (10)_{10} = (1010)_2$

$$X_1 \div X_2 = 1110101000000$$

- 2) Soient X_3 et X_4 deux nombres codés en hexadécimal selon la norme IEEE 754 en simple précision tel que : $X_3 = 2AF05000$ et $X_4 = 3E60D000$.
 - Calculer X_3 X_4 et X_3 × X_4 . Donner le résultat selon la norme IEEE 754 en simple précision et en décimal.

Remarque: La solution de cet exercice est longue, utilisez les données suivantes pour résoudre ce problème: $X_3 = \text{C0E7A000}$ et $X_4 = \text{C0600000}$.

 $X_3 = (C0E7A000)_{16} = (1100\ 0000\ 1110\ 0111\ 1010\ 0000\ 0000\ 0000)_2$

SM = 1 alors X_3 est négatif.

$$Eb = (10000001)_2 = (129)_{10} \text{ donc } E_{réel} = Eb - 127 = 129 - 127 = 2$$

On obtient $X_3 = -1,1100111101 \times 2^2$

(Juste pour vérifier le résultat des opérations après) $X_3 = -111,00111101 = -(2^0 + 2^1 + 2^2 + 2^{-3} + 2^{-4} + 2^{-5} + 2^{-6} + 2^{-8}) = (-7,23828125)_{10}$

 $X_4 = (C0600000)_{16} = (1100\ 0000\ 0110\ 0000\ 0000\ 0000\ 0000\ 0000)_2$

SM = 1 alors X_4 est négatif.

$$Eb = (10000000)_2 = (128)_{10} \text{ donc } E_{réel} = Eb - 127 = 128 - 127 = 1$$

On obtient $X_4 = -1.11 \times 2^1$

(Juste pour vérifier le résultat des opérations après) $X_4 = -1,11 \times 2^1 = -11,1 = -(2^0 + 2^1 + 2^{-1}) = (3,5)_{10}$

$$X_3 - X_4 = -1,11001111101 \times 2^2 - (-1,11 \times 2^1)$$

$$= -1,11001111101 \times 2^2 + 0,111 \times 2^2$$

$$= (-1,11001111101 + 0,111) \times 2^2$$

$$= -0,11101111101 \times 2^2$$

 $X_3 - X_4$ selon la norme IEEE 754 en simple précision (32 bits : 1 bit pour le signe, 8 bits pour l'exposant biaisé et 23 bits pour la mantisse) :

$$X_3 - X_4 = -1$$
, 110111101 $\times 2^1$

Eb =
$$E_{réel} + 2^{8-1} - 1 = 1 + 2^7 - 1 = 1 + 128 - 1 = (128)_{10} = (10000000)_2$$

 $X_3 - X_4$ en décimal :

$$= -0,11101111101 \times 2^2$$

$$=-11,10111101 = -(2^{0} + 2^{1} + 2^{-1} + 2^{-3} + 2^{-4} + 2^{-5} + 2^{-6} + 2^{-8})$$

 $=(-3,73828125)_{10}$

$$X_3 \times X_4 = -1,1100111101 \times 2^2 \times (-1,11 \times 2^1)$$

$$= (-1,1100111101 \times -1,11) \times 2^{2+1}$$

$$=+11,0010101010111\times 2^3$$

 $X_3 \times X_4$ selon la norme IEEE 754 en simple précision :

$$X_3 \times X_4 = +1, 10010101010111 \times 2$$

Eb =
$$E_{réel}$$
 + 2^{8-1} -1 = $4 + 2^{7}$ -1 = $4 + 128$ -1 = $(131)_{10}$ = $(10000011)_{2}$

 $X_3 \times X_4$ en décimal :

$$=+11,0010101010111\times 2^3=+11001,0101010111=+(2^0+2^3+2^4+2^{-2}+2^{-4}+2^{-6}+2^{-8}+2^{-9})$$

$$=(+25,333984375)_{10}$$

Exercice 3:

- Coder le nombre $(2097)_{10}$ en DCB.

$$(2097)_{10} = (0010\ 0000\ 1001\ 0111)_{DCB}$$

- Coder en ASCII (en hexadécimal) le mot suivant : COVID-19.

- Décoder le mot suivant (le mot est représenté en ASCII et en hexadécimal) :

53 74 72 75 63 74 75 72 65 20 4D 61 63 68 69 6E 65 = Structure Machine