BATNA 2 University of Algeria.
Mathematics and Computer Science Faculty
Common Core in Mathematics and Computer Science Department
Probabilities and Statistics II.
Practical Exercises 1
Semester-3. L2 SCMI.

Exercise 1

Let X and Y be discrete random variables, with joint probability function given by

$$
P_{X Y}= \begin{cases}1 / 2 & x=3, y=5 \\ 1 / 6 & x=3, y=9 \\ 1 / 6 & x=6, y=5 \\ 1 / 6 & x=6, y=9 \\ 0 & \text { otherwise }\end{cases}
$$

1. Compute $E(X), E(Y)$ and $E(X Y)$.
2. What do you conclude?
3. Prove that if X and Y are independent then $E(X Y)=E(X) E(Y)$.

Exercise 2

Compute C and $E(X)$ when the density function of X is given by each of the following. (a)

$$
f_{X}(x)= \begin{cases}C(x+1) & 6 \leq x \leq 8 \\ 0 & \text { Otherwise }\end{cases}
$$

(b)

$$
f_{X}(x)= \begin{cases}C x^{4} & -5 \leq x \leq-2 \\ 0 & \text { Otherwise }\end{cases}
$$

(c)

$$
f_{X}(x)= \begin{cases}\frac{1}{x^{2}} & x \geq 1 \\ \frac{C}{x^{2}} & x \leq-1 \\ 0 & \text { Otherwise }\end{cases}
$$

Exercise 3

Prove the monotonicity and the linearity of the expectation of a discrete random variable

Exercise 4

(a). Compute the expectation of the following distributions:

1. Geometric distribution
2. Hyper-geometric distribution
3. Poisson distribution
4. Standard normal distribution $N(0,1)$
(b) Using the properties of the expected value, conclude the expectation of the normal distribution $N\left(\mu, \sigma^{2}\right)$

Exercise 5

Suppose the joint probability function of X and Y is given by

$$
P(X=x, Y=y)= \begin{cases}1 / 7 & x=5, y=0 \\ 1 / 7 & x=5, y=3 \\ 1 / 7 & x=5, y=4 \\ 3 / 7 & x=8, y=0 \\ 1 / 7 & x=8, y=4 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Compute $E(X)$ and $E(Y)$.
(b) Compute $\operatorname{Cov}(X, Y)$.
(c) Compute $\operatorname{Var}(X)$ and $\operatorname{Var}(Y)$.
(d) Compute $\rho(X, Y)$.

Exercise 6

Let X and Y have joint density

$$
f(x, y)= \begin{cases}2 x^{3} y+2 y^{3} & 0 \leq x \leq 1,0 \leq y \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

Compute $\rho(X, Y)$.

Exercise 7

Suppose you roll two fair six sided dice. Let X be the number showing on the first die, and let Z be the sum of the two numbers showing.
(a) Compute $E(X)$.
(b) Compute $E(Z \mid X=1$.
(c) Compute $E(Z \mid X=6)$.
(d) Compute $E(X \mid Z=2)$.
(e) Compute $E(X \mid Z=4)$.
(f) Compute $E(X \mid Z=6)$.
(g) Compute $E(X \mid Z=7)$. .

Exercise 8

Let X and Y have joint density

$$
f(x, y)= \begin{cases}8 x y & 0 \leq x, y \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Compute $f(x)$.
(b) Compute $f(y)$.
(c) Compute $E(X \mid Y)$.
(d) Compute $E(Y \mid X)$.
(e) Compute $E(E(X \mid Y))$, and verify that it is equal to $E(X)$.

