Université Batna 2

1ère année Math &INF

Socle commun Math & INF

Module: SM1

TD N°2

Exercice 1:

- 1) Soient $N_1 = (-75)_{10}$ et $N_2 = (+95)_{10}$.
 - Représenter N₁ et N₂ en Cà1 sur 8 bits.
 - Calculer $N_1 + N_2$.
- 2) Soient $N_3 = (10000011)_2$ et $N_4 = (00001010)_2$. Sachant que N_3 et N_4 sont représentés en SVA sur 8 bits, calculer $N_3 + N_4$ en Cà2.
- 3) Soient $N_5 = (010111111)_2$ et $N_6 = (01001100)_2$. Sachant que N_5 et N_6 sont représentés en Cà1 sur 8 bits :
 - Calculer $N_5 + N_6$ en Cà2. Donner le résultat en Cà2 et en décimal.
 - Représenter N_5 et N_6 en décimal puis calculer $N_5 + N_6$.
 - Que constatez-vous concernant les deux résultats obtenus ? Quelle conclusion en tirez-vous ?
- 4) Soit $N_7 = (-128)_{10}$. Représenter N_7 en SVA, Cà1 et Cà2 sur 8 bits. Que constatez-vous ? Quelle conclusion en tirez-vous ?
- 5) Coder |N₇| en code DCB et en code réfléchi (code de Gray) (voir l'annexe).
- 6) Supposont que N₃ et N₅ sont représentés en DCB, donner leurs valeurs décimales.

Exercice 2:

- 1) On définit une représentation simplifiée de la virgule flottante comme suit : un nombre fractionnaire est représenté au total sur 11 bits :1 bit pour le signe, 4 bits pour l'exposant biaisé et 6 bits pour la mantisse.
 - Représenter $X_1 = (+12,25)_{10}$ et $X_2 = (-2,3)_{10}$ selon cette représentation.
 - Calculer $X_1 + X_2$ et $X_1 \div X_2$ (effectuer les opérations en binaire).
- 2) On dispose d'une machine où les nombres sont représentés en virgule flottante sur 32 bits (standard IEEE 754 en simple précision) (voir l'annexe).
 - Donner la représentation de $X_3 = (+27,1)_{10}$ sur cette machine.
 - Etant donné la représentation suivante sur la machine précédente:
 - - Donner le nombre décimal X₄ exprimé par cette représentation.
 - Calculer $X_3 X_4$ et $X_3 \times X_4$.

Exercice 3:

Le code ASCII standard étendu permet de représenter 256 caractères (alphabétiques, numériques, spéciaux) sur 8 bits (par caractère). Pour passer d'un caractère alphabétique ou numérique au caractère suivant, on ajoute 1.

Janvier 2021

Sachant que:

- Le code en ASCII du caractère alphabétique (a) en binaire est: 0 1 1 0 0 0 0 1
- Le code en ASCII du caractère alphabétique (A) en hexadécimal est: 41
- Le code en ASCII du caractère numérique (0) en hexadécimal est: 30
- 1) Représenter en code ASCII et en hexadécimal le mot : Yennayar2971
- 2) Décoder le mot suivant qui est représenté en ASCII et en hexadécimal :

49 4E 46 4F 52 4D 41 54 49 51 55 45

Janvier 2021 2

Annexe pour le TD2 de SM1:

Code réfléchi ou de Gray : Le code Gray est un type de codage binaire permettant de ne modifier qu'un seul bit à la fois quand un nombre est augmenté d'une unité¹. Cette propriété est importante pour plusieurs applications.

Pour construire le code de Gray d'un nombre N, il suffit de calculer le OU exclusif entre le N exprimé en binaire et ce même binaire décalé d'un rang à droite.

Le OU exclusif (⊕) : opération logique, donne 0 si les deux opérandes sont identiques et donne 1 sinon.

Α	В	A⊕B	
0	0	0	⇒ A et B identiques
0	1	1	
1	0	1	⇒ A et B différents
1	1	0	

Exemples : On veut représenter 10 en code de Gray. $(10)_{10} = (1010)_2$. Alors :

$$1010 \implies 10$$
 en binaire $0101 \implies 10$ en binaire décalé d'un rang à droite 1111

10 en décimal est représenté par 1111 en code de Gray.

Virgule Flottante : est représentée en deux manières différentes : représentation standard classique et standard IEEE 754. (Voir la table ci-dessous)

		Standard IEEE 754		
	Standard classique	Simple précision	Double précision	
Formulation	SM Eb M	SM Eb M	SM Eb M	
	1 /	1 8 23	1 11 52	
	bit	bit bits bits	bit bits bits	
Mantisse	0,1	1,	1,	
	M	M	M	
Exposant	Exposant réel $+ 2^{(n-1)}$	Exposant réel + $2^{(8-1)}$ -1	Exposant réel + $2^{(11-1)}$ - 1,	
biaisé (Eb)	Biais	Biais=127	Biais=1023	

La représentation standard classique : voir le cours chapitre 3.

Le standard IEEE 754 en simple précision : un nombre fractionnaire selon ce standard et représenté sur 32 bits divisés en 3 parties:

- **SM** est le signe de la mantisse. SM \leftarrow 0 si M \geq 0. SM \leftarrow 1 si M < 0.
- Eb est l'exposant biaisé, codé sur 8 bits et calculé selon la formule suivante :

Janvier 2021

3

¹ https://fr.wikipedia.org/wiki/Code_de_Gray

$$Eb = E_{réel} + (2^{8-1} - 1) = E_{réel} + 127$$

- M est la mantisse, codée sur 23 bits. Dans le standard IEEE 754 la virgule est placée après le bit à 1 ayant le poids fort (pas comme le standard classique).

Par exemple:

$$(11011,01)_2 = (0,1101101 \times 2^5) \iff$$
 selon le standard classique
$$= (1,101101 \times 2^4) \iff$$
 selon le standard IEEE 754
$$= (1,M \times 2^4)$$
 où $M = 101101$

Exemple: $(100011,01)_2 = (0,10001101 \times 2^6) = (1,10001101 \times 2^5)$

Le nombre est positif alors SM = 0

$$Eb = E_{réel} + 127 = 5 + 127 = (132)_{10} = (10000100)_2$$

 $\mathbf{M} = 10001101$

La représentation du nombre (11011,01)₂ en virgule flottante selon le standard IEEE 754 en simple précision est :

Le standard IEEE 754 en double précision : un nombre fractionnaire selon ce standard et représenté sur 64 bits divisés en 3 parties :

- SM: codé sur 1 bit
- Eb: codé sur 11 bits et calculé selon la formule suivante :

$$Eb = E_{réel} + (2^{11-1} - 1) = E_{réel} + 1023$$

- M: codée sur 52 bits.

Exemple:
$$(-100011,01)_2 = (-0,10001101 \times 2^6) = (-1,10001101 \times 2^5)$$

Le nombre est négatif alors SM = 1

$$\mathbf{Eb} = \mathbf{E}_{\text{réel}} + 1023 = 5 + 1023 = (1028)_{10} = (10000000100)_2$$

 $\mathbf{M} = 10001101$

La représentation du nombre $(-100011,01)_2$ en virgule flottante selon le standard IEEE 754 en double précision est :

Janvier 2021 4