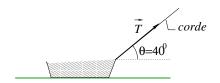
Question : Deux masses sphériques de même volume, l'une pesant 1 kg et l'autre 100 kg sont lâchées au même instant du haut d'un bâtiment sans vitesse initiale. Laquelle des deux masses touchera le sol la première. On négligera la résistance de l'air.

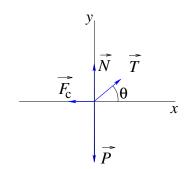
SOLUTION: Elles toucheront le sol <u>en même temps</u> car si on néglige la résistance de l'air, les deux masses seront soumises uniquement à la pesanteur et auront la même accélération g. Et puisqu'elles sont lâchées sans vitesse initiales, elles auront aussi la même vitesse à chaque instant. Étant parties du même point, elles vont être côte à côte (جنبا إلى جنب) à chaque instant et vont donc arriver au sol en même temps. Autrement dit, la masse n'intervient pas dans le mouvement.

Exercice 1:

Un traîneau de 8 kg est tiré à vitesse constante à l'aide d'une corde sur un plan horizontal. Quelle force T exerce-t-on sur le traîneau si le coefficient de frottement cinétique μ_c vaut 0.20 et la corde fait un angle $\theta = 40^{\circ}$ avec le plan? Pour l'accélération de la pesanteur, prendre $g = 9.8 \,\mathrm{m/s^2}$.



SOLUTION : Les forces agissant sur le traîneau sont (voir figure ci-contre) : son poids \vec{P} , la traction \vec{T} , la force de frottement cinétique $\vec{F_c}$ et la force normale exercée par le plan. Le traîneau n'étant pas accéléré, la deuxième loi de Newton projetée sur les axes donne : $\sum F_x = 0$ et $\sum F_y = 0$, soit, $T\cos\theta - F_c = 0$ et $T\sin\theta + N - P = 0$. On sait que $F_c = \mu_c N$. Pour trouver T, il faut éliminer F_c et N de ces trois équations et on obtient :



$$T = \frac{\mu_c P}{\cos \theta + \mu_c \sin \theta} \tag{1}$$

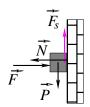
Application numérique:

$$T = \frac{0.2 \times 8 \times 9.8}{\cos 40 + 0.2 \times \sin 40} = 17.5 \,\text{N} \tag{2}$$

Exercice 2 : Un bloc de 20 N plaqué contre un mur vertical est maintenu immobile grâce à une force F_P qui équilibre sont poids.

Les coefficients de frottement statique et cinétique entre le mur et le bloc valent respectivement 0.6 et 0.4. On applique sur le bloc une force horizontale F de 50 N et on supprime la force F_P . a) Le bloc bougera-t-il? b) Quelle force le mur exerce-t-il sur le bloc?

SOLUTION : Une fois la force F_P supprimée, le bloc se trouve soumis à 4 forces : son poids \vec{P} , la force appliquée \vec{F} , la force normale \vec{N} (qui n'est rien d'autre que la réaction du mur à \vec{F}) et enfin la force de frottement statique \vec{F}_s (voir figure ci-contre). Calculons la force de frottement maximum. On a $F_{\rm smax} = \mu_s \times N$. La force de poussée \vec{F} est transmise au mur via le bloc, le mur réagit dans le sens opposé avec la force égale \vec{N} qui vaut donc 50 N. Il vient $F_{\rm smax} = 0.6 \times 50 = 30$ N. Comme on le voit sur la figure, la force

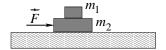


de frottement \vec{F}_s s'oppose au poids du bloc. a) Le bloc ne bougera pas car son poids (20 N) est inférieur à $F_{\rm smax}$ (30 N). b) Pour maintenir le bloc en équilibre, le mur exerce 2 forces sur le bloc : la force normale N de 50 N vers la gauche et la force de frottement \vec{F}_s de 20 N vers le haut.

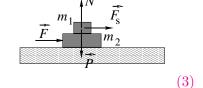
Exercice 3 : On dépose un bloc de masse $m_1 = 4$ kg sur un bloc de masse $m_2 = 5$ kg. Une force horizontale

d'au moins 12 N est nécessaire pour faire glisser m_1 sur m_2 .

L'ensemble repose maintenant sur une surface plane horizontale dépourvue de tout frottement (figure ci-contre). Trouver la force maximum horizontale F que l'on peut appliquer à m_2 pour que les deux masses se déplacent ensemble sans que m_1 ne bouge par rapport à m_2 . Quelle est alors l'accélération des deux blocs?



SOLUTION : La première partie du problème nous dit que la force de frottement maximum entre m_1 et m_2 vaut : $F_{\rm smax}=12\,{\rm N}$. Dans la deuxième partie, la force \vec{F} appliquée à m_2 va communiquer, tant qu'elle ne dépasse pas une certaine valeur critique (valeur maximum) à l'ensemble (m_1+m_2) , une accélération



$$a = F/(m_1 + m_2)$$

L'accélération étant dans le sens de la force appliquée \vec{F} , la masse m_1 aura tendance à glisser vers l'arrière. La force de frottement statique \vec{F}_s sur m_1 s'oppose au glissement et est donc dirigée vers l'avant. Le poids de m_1 étant compensé par la force de réaction de m_2 , la loi de Newton sur m_1 s'écrit $\vec{F}_s = m_1 \vec{a}$, soit en module :

$$F_s = m_1 a \tag{4}$$

ou encore, compte tenu de (3),

$$F_s = \frac{m_1}{m_1 + m_2} F (5)$$

Pour éviter que m_1 ne glisse sur m_2 , la force F appliquée à m_2 doit être telle que F_s reste inférieure à F_{smax} , ce qui se traduit par (voir (5)) :

$$\frac{m_1}{m_1 + m_2} F \le F_{\text{smax}} \tag{6}$$

La valeur maximum de F est donc

$$F_{\text{max}} = \frac{m_1 + m_2}{m_1} F_{\text{smax}} = \frac{4+5}{4} \times 12 = 27 \,\text{N}$$
 (7)

b) L'accélération des deux blocs s'obtient à partir de l'équation ((3)) quand $F = F_{\text{max}}$:

$$a = F_{\text{max}}/(m_1 + m_2) = 27/9 = 3 \,\text{m/s}^2$$

Notons qu'on peut aussi utiliser l'équation $m_1 a = F_{\text{smax}}$ (équation (4) pour $F_s = F_{\text{smax}}$), d'où l'on tire

$$a = \frac{F_{\text{smax}}}{m_1} = \frac{12}{4} = 3 \,\text{m/s}^2$$