Année universitaire: 2021-2022

<u>Département</u>: S.C.M.I

Module: Algèbre 1

Exercices sur le chapitre 3

<u>Ex1</u> Sur l'ensemble des entiers relatifs $\mathbb Z$, on définit la relation binaire $\mathcal R$ par :

$$x \mathcal{R} y \Leftrightarrow \exists \ k \in \mathbb{Z} : x-y=3k$$

- 1) Montrer que ${\mathcal R}$ est une relation d'équivalence.
- 2) Déterminer les classes d'équivalence de zéro, un et deux.
- 3) Déterminer l'ensemble quotient $\mathbb{Z}/3\mathbb{Z}$.

Ex2 Soient E un ensemble non vide et $\mathcal R$ une relation réflexive dans E telle que :

$$\forall x,y,z \in E$$
, $(x \mathcal{R} y \text{ et } y \mathcal{R} z) \Rightarrow (z \mathcal{R} x)$

Montrer que \mathcal{R} est une relation d'équivalence.

 $\underline{\mathsf{Ex3}} \; \mathsf{Sur} \; \overline{\mathbb{N}}^*$, on définit la relation \mathcal{R} par :

a
$$\mathcal{R}$$
 b \Leftrightarrow \exists q \in \mathbb{N}^* : b=q.a

- 1) Montrer que \mathcal{R} est une relation d'ordre.
- 2) L'ordre est-il total?

 $\underline{\text{Ex4}}\,$ Sur l'ensemble des parties d'un ensemble non vide E, on définit la relation $\mathcal R$ par :

$$A \mathcal{R} B \Leftrightarrow A \subset B$$

- 1) Montrer que $\mathcal R$ est une relation d'ordre.
- 2) L'ordre est-il total?