¥

Algorithmic Complexity and Review

1

Analyze the C code snippet provided, considering aspects like data structures,
memory management, and control flow, then answer the subsequent questions

Review

to exhibit your understanding of C programming concepts.

#include <stdio.h>
#include <stdlib.h>

#define MAX_NAME_LEN 50
#define GREETING "Hello, %s! (Greeting number %d)\n"

typedef struct User {

char name [MAX_NAME_LEN];
int times_to_greet;
struct User *next;

} User;

3 void greet(const User *u);

typedef void (*GreetFunction) (const Userx);

void write_greeting_to_file(const char* name,

int

int number) {

FILE* file = fopen("greetings.txt", "a"
if (file == NULL) {
perror ("Error opening file");
return;
}
fprintf(file, GREETING, name, number);
fclose(file);
main () {
User*x users = NULL;
GreetFunction my_greet_function = greet;
User* new_user = (User*) malloc(sizeof (User));
if (new_user == NULL) {

perror ("Unable to allocate memory for new user");

return 1;

}

printf ("Enter your name: ");
scanf ("%49s", new_user ->name) ;

printf ("How many times should I greet you? ");

scanf ("%d", &(new_user->times_to_greet));

if (new_user->times_to_greet <
printf ("Invalid number of
free(new_user);
return 1;

new_user ->next = users;

1) o

greetings.

Exiting.\n");



}

users = new_user;
my_greet_function (users);

switch(new_user->times_to_greet) {
case 1:
printf ("You got greeted once.\n");
break;
case 2:
printf ("Twice! Nice to greet you, %s!\n", new_user->
name) ;
break;
default:
printf ("%s, you got greeted %d times!\n", new_user->
name , new_user—>times_to_greet);
break;

}

while (users) {
User*x to_free = users;
users = users->next;
free(to_free);

}

return O;

void greet(const User *u) {

while (u) {
for(int i = 0; i < u->times_to_greet; i++) {
printf (GREETING, u->name, i+1);
write_greeting_to_file(u->name, i+1);
}
u

= u->next;

Listing 1: C code for analysis

Questions:

Section 1: Basic Code Understanding

Q1L:

Q2:

Q3:

Can you identify the purpose of using #define for MAX NAME LEN and
GREETING in the code?

Explain the functionality and usage of the next pointer within the User
structure in the code.

Explain why the code checks if new_user is NULL after calling malloc in
the main function.



Section 2: Memory Management and Pointers

Q4: What is the role and significance of pointers in the C language, providing

examples from the code?

Q5: What are the potential risks of using pointers and how can they be miti-

gated?

Q6: Discuss the concept of function pointers and how it is employed in the

code.

Q7: How can pointer arithmetic be applied for array traversal, and what con-

siderations should be made about memory boundaries?

Section 3: User Input and File I/O Operations

Q8: Suggest an alternative approach to handle names with spaces during user
input and explain why the proposed solution might be a preferable func-

tion for reading strings.

Q9: Why might it be necessary to handle invalid times_to_greet input and

how might you clear invalid input from the input buffer?

Q10: Propose a feature that allows a user to specify the filename where greetings

will be saved and provide a relevant code snippet.

Section 4: Data Structures (Stack and Queue)

Implementation

Q11: Implement a stack for storing user data, describe push and pop operations,

and discuss the impact on the user greeting order.

Q12: Implement a queue for user data storage, elucidate enqueue and dequeue

operations, and discuss their impact on the greeting order of users.

Q13: In the context of data structure implementations (both stack and queue),
discuss how two users added sequentially would be greeted and justify

your answers.



