
Algorithmic Complexity and Review

1 Review

Analyze the C code snippet provided, considering aspects like data structures,
memory management, and control flow, then answer the subsequent questions
to exhibit your understanding of C programming concepts.

1 #include <stdio.h>

2 #include <stdlib.h>

3

4 #define MAX_NAME_LEN 50

5 #define GREETING "Hello , %s! (Greeting number %d)\n"

6

7 typedef struct User {

8 char name[MAX_NAME_LEN ];

9 int times_to_greet;

10 struct User *next;

11 } User;

12

13 void greet(const User *u);

14 typedef void (* GreetFunction)(const User*);

15

16 void write_greeting_to_file(const char* name , int number) {

17 FILE* file = fopen("greetings.txt", "a");

18 if (file == NULL) {

19 perror("Error opening file");

20 return;

21 }

22 fprintf(file , GREETING , name , number);

23 fclose(file);

24 }

25

26

27 int main() {

28 User* users = NULL;

29 GreetFunction my_greet_function = greet;

30

31 User* new_user = (User*) malloc(sizeof(User));

32 if(new_user == NULL) {

33 perror("Unable to allocate memory for new user");

34 return 1;

35 }

36

37 printf("Enter your name: ");

38 scanf("%49s", new_user ->name);

39 printf("How many times should I greet you? ");

40 scanf("%d", &(new_user ->times_to_greet));

41

42 if(new_user ->times_to_greet < 1) {

43 printf("Invalid number of greetings. Exiting .\n");

44 free(new_user);

45 return 1;

46 }

47

48 new_user ->next = users;

1



49 users = new_user;

50

51 my_greet_function(users);

52

53 switch(new_user ->times_to_greet) {

54 case 1:

55 printf("You got greeted once.\n");

56 break;

57 case 2:

58 printf("Twice! Nice to greet you , %s!\n", new_user ->

name);

59 break;

60 default:

61 printf("%s, you got greeted %d times!\n", new_user ->

name , new_user ->times_to_greet);

62 break;

63 }

64

65 while(users) {

66 User* to_free = users;

67 users = users ->next;

68 free(to_free);

69 }

70

71 return 0;

72 }

73 void greet(const User *u) {

74 while(u) {

75 for(int i = 0; i < u->times_to_greet; i++) {

76 printf(GREETING , u->name , i+1);

77 write_greeting_to_file(u->name , i+1);

78 }

79 u = u->next;

80 }

81 }

Listing 1: C code for analysis

Questions:

Section 1: Basic Code Understanding

Q1: Can you identify the purpose of using #define for MAX NAME LEN and
GREETING in the code?

Q2: Explain the functionality and usage of the next pointer within the User

structure in the code.

Q3: Explain why the code checks if new user is NULL after calling malloc in
the main function.

2



Section 2: Memory Management and Pointers

Q4: What is the role and significance of pointers in the C language, providing
examples from the code?

Q5: What are the potential risks of using pointers and how can they be miti-
gated?

Q6: Discuss the concept of function pointers and how it is employed in the
code.

Q7: How can pointer arithmetic be applied for array traversal, and what con-
siderations should be made about memory boundaries?

Section 3: User Input and File I/O Operations

Q8: Suggest an alternative approach to handle names with spaces during user
input and explain why the proposed solution might be a preferable func-
tion for reading strings.

Q9: Why might it be necessary to handle invalid times to greet input and
how might you clear invalid input from the input buffer?

Q10: Propose a feature that allows a user to specify the filename where greetings
will be saved and provide a relevant code snippet.

Section 4: Data Structures (Stack and Queue)
Implementation

Q11: Implement a stack for storing user data, describe push and pop operations,
and discuss the impact on the user greeting order.

Q12: Implement a queue for user data storage, elucidate enqueue and dequeue
operations, and discuss their impact on the greeting order of users.

Q13: In the context of data structure implementations (both stack and queue),
discuss how two users added sequentially would be greeted and justify
your answers.

3


