Algebra tutorial series 3

Exercise 1 Let the map $g: \mathbb{R}-\left\{\frac{1}{2}\right\} \rightarrow \mathbb{R}^{*}$ be such that:

$$
g(x)=\frac{9}{2 x-1}
$$

1. Show that g is a bijection. Determine the inverse of g.
2. Determine $g^{-1}([-5,2])$.

Exercise 2 (Exam January 2023)

We define on \mathbb{R}, the composition law $*$ by : $\forall x, y \in \mathbb{R}, \quad x * y=x+y-2$.

1. Show that $(\mathbb{R}, *)$ is an abelian group.
2. let $n \in \mathbb{N}^{*}$. We set $x^{(1)}=x$ and $x^{(n+1)}=x^{(n)} * x$
(a) Calculate $x^{(2)}, x^{(3)}$ et $x^{(4)}$.
(b) Show that $\forall n \in \mathbb{N}^{*}: x^{(n)}=n x-2(n-1)$.
3. Let $A=\{x \in \mathbb{R}: x$ is even $\}$. Show that $(A, *)$ is a subgroup of $(\mathbb{R}, *)$.

Exercise 3 Let $(G,$.$) be a group, we denote by Z(G)=\{x \in G / \quad \forall y \in G, x y=y x\}$ the center of G.

1. Show that $Z(G)$ is a subgroup of G.
2. Show that G is commutative iff $Z(G)=G$.

Note : $x y=x . y,(x y)^{-1}=y^{-1} x^{-1}$, e the identity element and x^{-1} the inverse of x.
Exercise 4 Let * be a binary operation on \mathbb{R}^{2} defined by :

$$
\forall(x, y),\left(x^{\prime}, y^{\prime}\right) \in \mathbb{R}^{2}, \quad(x, y) *\left(x^{\prime}, y^{\prime}\right)=\left(x+x^{\prime}, y+y^{\prime}+2 x x^{\prime}\right)
$$

1. Show that $(\mathbb{R}, *)$ is an abelian group.
2. Show that the curve of equation $y=x^{2}$ is a subgroup of $\left(\mathbb{R}^{2}, *\right)$ which we will denote P.
i.e. $P=\left\{\left(x, x^{2}\right) / \quad x \in \mathbb{R}\right\}$ is a subgroup of $\left(\mathbb{R}^{2}, *\right)$.
3. Show that the map $\phi:(\mathbb{R},+) \rightarrow(P, *)$, defined by $\phi(x)=\left(x, x^{2}\right)$ is a group isomorphism

Exercise 5 Let $(A,+,$.$) be a ring, 0$ and 1 the identities for the laws " + " and "."respectively. We define the following operations \oplus and \otimes on A by :

$$
\forall a, b \in A, \quad a \oplus b=a+b+1 \text { and } \quad a \otimes b=a . b+a+b
$$

1. Show that (A, \oplus, \otimes) is a ring.
2. Show that the map $f:(A,+,.) \rightarrow((A, \oplus, \otimes)$ given by $f(a)=a-1$ is an isomorphism of rings.

Exercise 6 Let

$$
\mathbb{Z}[\sqrt{2}]=\{a+b \sqrt{2} / \quad a, b \in \mathbb{Z}\}
$$

and

$$
\mathbb{Q}[\sqrt{2}]=\{p+q \sqrt{2} / \quad p, q \in \mathbb{Q}\}
$$

1. Show that $\mathbb{Z}[\sqrt{2}]$ is a subring of \mathbb{R}. Is it a field?
2. Show that $\mathbb{Q}[\sqrt{2}]$ is a subfield of \mathbb{R} containing \mathbb{Q} and that the inclusions $\mathbb{Q} \subset \mathbb{Q}[\sqrt{2}] \subset \mathbb{R}$ are strict.
3. Are the following sets subrings of $\mathbb{Z}[\sqrt{2}]$:

$$
A=\mathbb{Z}, \quad B=\{n \sqrt{2} / \quad n \in \mathbb{Z}\}, \quad C=\{2 m+n \sqrt{2} / \quad n, m \in \mathbb{Z}\}
$$

Additional exercises

Exercise 1 Let \mathcal{R} the binary relation defined on \mathbb{Z} by:

$$
\forall x \in \mathbb{Z}, \quad x \mathcal{R} y \Leftrightarrow x-y \quad \text { is a multiple of } 5
$$

1. Show that \mathcal{R} is an equivalence relation.
2. Calculate the equivalence class of an element x of \mathbb{Z}.
3. Determine the equivalence class of $0,1,2,3$ and 4.
4. Show that $\mathbb{Z} / 5 \mathbb{Z}=\{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}\}$
5. Show that $\overline{2023}=\overline{3}$

Exercise 2 Let $G=\mathbb{R}^{*} \times \mathbb{R}$, for any elements $(a, b),(c, d)$ of G, we put

$$
(a, b) \otimes(c, d)=\left(a c, b c+d a^{2}\right)
$$

1. Calculate $(-1,1) \otimes(-1,2)(-1,2) \otimes(-1,1)$.
2. Show that G is a non-abelian group.

Exercise 3 Let $(G, *)$ a group, H and K two subgroups of G.

1. Show that $H \cap K$ is a subgroup of G.
2. Show that $H \cup K$ is a subgroup of G if and only if $H \subset K$ or $K \subset H$.
