Algebra tutorial series 3

Exercise 1 Let the map $g: \mathbb{R} - \{\frac{1}{2}\} \to \mathbb{R}^*$ be such that :

$$g(x) = \frac{9}{2x - 1}$$

- 1. Show that g is a bijection. Determine the inverse of g.
- 2. Determine $g^{-1}([-5,2])$.

Exercise 2 (Exam January 2023)

We define on \mathbb{R} , the composition law * by $: \forall x, y \in \mathbb{R}$, x * y = x + y - 2.

- 1. Show that $(\mathbb{R}, *)$ is an abelian group.
- 2. let $n \in \mathbb{N}^*$. We set $x^{(1)} = x$ and $x^{(n+1)} = x^{(n)} * x$
- (a) Calculate $x^{(2)}, x^{(3)}$ et $x^{(4)}$.
- (b) Show that $\forall n \in \mathbb{N}^* : x^{(n)} = nx 2(n-1)$.
- 3. Let $A = \{x \in \mathbb{R} : x \text{ is even}\}$. Show that (A, *) is a subgroup of $(\mathbb{R}, *)$.

Exercise 3 Let (G, .) be a group, we denote by $Z(G) = \{x \in G | \forall y \in G, xy = yx\}$ the center of G.

- 1. Show that Z(G) is a subgroup of G.
- 2. Show that G is commutative iff Z(G) = G.

Note : xy = x.y, $(xy)^{-1} = y^{-1}x^{-1}$, e the identity element and x^{-1} the inverse of x.

Exercise 4 Let * be a binary operation on \mathbb{R}^2 defined by :

$$\forall (x,y), (x',y') \in \mathbb{R}^2, \quad (x,y) * (x',y') = (x+x', y+y'+2xx')$$

- 1. Show that $(\mathbb{R}, *)$ is an abelian group.
- 2. Show that the curve of equation $y = x^2$ is a subgroup of $(\mathbb{R}^2, *)$ which we will denote P. i.e. $P = \{(x, x^2) / x \in \mathbb{R}\}$ is a subgroup of $(\mathbb{R}^2, *)$.
- 3. Show that the map $\phi: (\mathbb{R}, +) \to (P, *)$, defined by $\phi(x) = (x, x^2)$ is a group isomorphism

Exercise 5 Let (A, +, .) be a ring, 0 and 1 the identities for the laws "+" and "." respectively. We define the following operations \oplus and \otimes on A by :

$$\forall a, b \in A, \quad a \oplus b = a + b + 1 and \quad a \otimes b = a.b + a + b$$

1. Show that (A, \oplus, \otimes) is a ring.

2. Show that the map $f: (A, +, .) \to ((A, \oplus, \otimes) \text{ given by } f(a) = a - 1 \text{ is an isomorphism of rings.}$

Exercise 6 Let

$$\mathbb{Z}\left[\sqrt{2}\right] = \left\{a + b\sqrt{2}/ \quad a, b \in \mathbb{Z}\right\}$$
$$\mathbb{Q}\left[\sqrt{2}\right] = \left\{p + q\sqrt{2}/ \quad p, q \in \mathbb{Q}\right\}$$

and

- 1. Show that $\mathbb{Z}\left[\sqrt{2}\right]$ is a subring of \mathbb{R} . Is it a field?
- 2. Show that $\mathbb{Q}\left[\sqrt{2}\right]$ is a subfield of \mathbb{R} containing \mathbb{Q} and that the inclusions $\mathbb{Q} \subset \mathbb{Q}\left[\sqrt{2}\right] \subset \mathbb{R}$ are strict.

3. Are the following sets subrings of $\mathbb{Z}\left[\sqrt{2}\right]$:

$$A = \mathbb{Z}, \quad B = \left\{ n\sqrt{2} / n \in \mathbb{Z} \right\}, \quad C = \left\{ 2m + n\sqrt{2} / n, m \in \mathbb{Z} \right\}$$

Additional exercises

Exercise 1 Let \mathcal{R} the binary relation defined on \mathbb{Z} by :

$$\forall x \in \mathbb{Z}, \quad x\mathcal{R}y \Leftrightarrow x-y \quad is \ a \ multiple \ of \ 5$$

- 1. Show that \mathcal{R} is an equivalence relation.
- 2. Calculate the equivalence class of an element x of \mathbb{Z} .
- 3. Determine the equivalence class of 0, 1, 2, 3 and 4.
- 4. Show that $\mathbb{Z}/5\mathbb{Z} = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}\}$
- 5. Show that $\overline{2023} = \overline{3}$

Exercise 2 Let $G = \mathbb{R}^* \times \mathbb{R}$, for any elements (a, b), (c, d) of G, we put

$$(a,b) \otimes (c,d) = (ac, bc + da^2)$$

- 1. Calculate $(-1,1) \otimes (-1,2) (-1,2) \otimes (-1,1)$.
- 2. Show that G is a non-abelian group.

Exercise 3 Let (G, *) a group, H and K two subgroups of G.

- 1. Show that $H \cap K$ is a subgroup of G.
- 2. Show that $H \cup K$ is a subgroup of G if and only if $H \subset K$ or $K \subset H$.