Algebra tutorial series 1

Reminder

Recall that $(E, +, \cdot)$ is a \mathbb{R} -vector space if

- 1. (E, +) is an abelian group,
- 2. (a) $\forall x, y \in E, \forall \alpha \in \mathbb{R}, \alpha \cdot (x+y) = \alpha \cdot x + \alpha \cdot y,$
 - (b) $\forall x \in E, \ \forall \alpha, \beta \in \mathbb{R}, \ (\alpha + \beta) \cdot x = \alpha \cdot x + \beta \cdot x,$
 - (c) $\forall x \in E, \ \forall \alpha, \beta \in \mathbb{R}, \ \alpha \cdot (\beta \cdot x) = (\alpha \beta) \cdot x,$
 - (d) $1 \cdot x = x$.

Exercise 1 Show that the sets below are vector spaces (on \mathbb{R}) :

 $-E_1 = \mathbb{R}^2$ with addition "+" and multiplication "." by a real number, defined by :

$$\forall (x,y), (x',y') \in \mathbb{R}^2, \quad \forall \alpha \in \mathbb{R}, \quad (x,y) + (x',y') = (x+x',y+y'), \quad \alpha \cdot (x,y) = (\alpha x, \alpha y).$$

- $\begin{array}{l} -E_2 = \{P \in \mathbb{R}_2 \left[X\right] / & degP \leq 2\} \text{ the set of polynomials of degree less than or equal to 2, with coefficients in } \mathbb{R}, with addition P + Q of polynomials and multiplication by a real number <math>\lambda \cdot P$. $\forall P, Q \in E, \quad P = aX^2 + bX + c, \quad Q = a'X^2 + b'X + c', \quad P + Q = (a + a')X^2 + (b + b')X + (c + c').$ $and \forall \alpha \in \mathbb{R} \quad \alpha \cdot P = (\alpha \cdot a)X^2 + (\alpha \cdot b)X + (\alpha \cdot c). \end{array}$
- $E_3 = \{(u_n) : \mathbb{N} \longrightarrow \mathbb{R}\} : \text{the set of real sequences with the addition of the sequences defined by } (u_n) + (v_n) = (u_n + v_n) \text{ and the multiplication by a réel number } \lambda \cdot (u_n) = (\lambda \times u_n)$
- $E_4 = \{f : [0,1] \longrightarrow \mathbb{R}\} : the set of real-valued functions defined on the interval [0,1], with addition of the functions <math>f + g$ and multiplication by a real number $\lambda \cdot f$.

Exercise 2 Study in which cases \mathbb{R}^2 is a vector space on \mathbb{R} for the laws noted respectively \oplus and \otimes :

1. $\forall (x, y), (s, t) \in \mathbb{R}^2, \forall \alpha \in \mathbb{R}$

$$(x,y) \oplus (s,t) = (x+y,s+t); \quad \alpha \otimes (x,y) = (\alpha x, \alpha y).$$

2. $\forall (x, y), (s, t) \in \mathbb{R}^2, \forall \alpha \in \mathbb{R}$

 $(x,y) \oplus (s,t) = (x+s,y+t); \quad \alpha \otimes (x,y) = (\alpha x, 0).$

3. $\forall (x, y), (s, t) \in \mathbb{R}^2, \forall \alpha \in \mathbb{R}$

$$(x, y) \oplus (s, t) = (x.s, y.t); \quad \alpha \otimes (x, y) = (\alpha x, \alpha y).$$

Exercise 3 In each of the following cases, say whether E_i is a subspace of E. 1. $E = \mathbb{R}^2$,

$$E_{1} = \{(x,y) \in \mathbb{R}^{2} / x + y = 1\}, \quad E_{2} = \{(x,y) \in \mathbb{R}^{2} / 2x + 3y = 0\}, \\ E_{3} = \{(x,y) \in \mathbb{R}^{2} / xy \leq 0\}, \quad E_{4} = \{(x,y) \in \mathbb{R}^{2} / x \leq y\} \\ E_{5} = \{(2x,3x) / x \in \mathbb{R}\}$$

2. $E = \mathcal{C}(\mathbb{R}, \mathbb{R}),$

$$E_1 = \{ f \in E / f(1) = f(0) \}, \quad E_2 = \{ f \in E / f(1) - 2f(0) = 0 \},\$$

3. $E = \mathbb{R}_2 [X] = \{ P = aX^2 + bX + c \ / \ a, b, c \in \mathbb{R} \}$

$$E_{1} = \{ P \in E / P'(0) = 2 \}, \quad E_{2} = \{ P \in E / P'(x) \ge 0, \forall x \in \mathbb{R} \}$$

2.Vector families

Exercise 4 Specify whether the following vectors $\{e_1, \dots\}$ form a linearly independent or generating family. Express, if possible, the vector a as a linear combination of the vectors e_1, e_2, e_3 of E, in each of the following cases

1. $E = \mathbb{R}, e_1 = 3.$ 2. $E = \mathbb{R}^2, e_1 = (1, 1), e_2 = (-1, 2), e_3 = (1, 0), \quad a = (2, 4).$ 3. $E = \mathbb{R}^2, e_1 = (1, 1), e_2 = (-1, -1), e_3 = (2, 2), \quad a = (1, 0).$ 4. $E = \mathbb{R}^3, e_1 = (1, 1, 0), e_2 = (1, 0, 1), e_3 = (0, 1, 1), \quad a = (1, 1, 1).$ 5. $E = \mathbb{R}_2[X], e_1 = 1 + 3X, e_2 = X^2 - X, e_3 = X^2 + 1, \quad a = X^2 + X + 1, \quad a = X^3.$ 6. $E = \mathcal{C}(\mathbb{R}, \mathbb{R}), e_1 : x \mapsto x, \quad e_2 : x \mapsto \cos x, \quad e_3 : x \mapsto \sin x. \quad a : x \mapsto \cos^2 x.$

Exercise 5 In the vector space \mathbb{R}^3 , we consider the two families of vectors : $A = \{v_1(2, 0, -1), v_2(3, 2, -4)\}, \text{ and } B = \{w_1(1, 2, -3), w_2(0, 4, -5)\}.$ — Show that span(A) = span(B)

Exercise 6 In the vector space \mathbb{R}^4 , we consider the vectors

 $v_1 = (1, 1, 1, 1), v_2 = (0, 1, 2, 1), v_3 = (1, 0, -2, 3)$ and $v_4 = (1, 1, 2, -2).$

- 1. Determine the rank of the family $A = \{v_1, v_2, v_3, v_4\}$. Is the set A linearly independent?
- 2. Determine real numbers α and β so that the vector $u = (1, 1, \alpha, \beta) \in span(A)$.