Algebra tutorial series 1

Reminder

Recall that $(E,+, \cdot)$ is a \mathbb{R}-vector space if

1. $(E,+)$ is an abelian group,
2. (a) $\forall x, y \in E, \forall \alpha \in \mathbb{R}, \alpha \cdot(x+y)=\alpha \cdot x+\alpha \cdot y$,
(b) $\forall x \in E, \forall \alpha, \beta \in \mathbb{R},(\alpha+\beta) \cdot x=\alpha \cdot x+\beta \cdot x$,
(c) $\forall x \in E, \forall \alpha, \beta \in \mathbb{R}, \alpha \cdot(\beta \cdot x)=(\alpha \beta) \cdot x$,
(d) $1 \cdot x=x$.

Exercise 1 Show that the sets below are vector spaces (on \mathbb{R}):
$-E_{1}=\mathbb{R}^{2}$ with addition " + " and multiplication ". " by a real number, defined by :

$$
\forall(x, y),\left(x^{\prime}, y^{\prime}\right) \in \mathbb{R}^{2}, \quad \forall \alpha \in \mathbb{R}, \quad(x, y)+\left(x^{\prime}, y^{\prime}\right)=\left(x+x^{\prime}, y+y^{\prime}\right), \quad \alpha \cdot(x, y)=(\alpha x, \alpha y)
$$

- $E_{2}=\left\{P \in \mathbb{R}_{2}[X] /\right.$ deg $\left.P \leq 2\right\}$ the set of polynomials of degree less than or equal to 2 , with coefficients in \mathbb{R}, with addition $P+Q$ of polynomials and multiplication by a real number $\lambda \cdot P$. $\forall P, Q \in E, \quad P=a X^{2}+b X+c, \quad Q=a^{\prime} X^{2}+b^{\prime} X+c^{\prime}, \quad P+Q=\left(a+a^{\prime}\right) X^{2}+\left(b+b^{\prime}\right) X+\left(c+c^{\prime}\right)$. and $\forall \alpha \in \mathbb{R} \quad \alpha \cdot P=(\alpha \cdot a) X^{2}+(\alpha \cdot b) X+(\alpha \cdot c)$.
$-E_{3}=\left\{\left(u_{n}\right): \mathbb{N} \longrightarrow \mathbb{R}\right\}$: the set of real sequences with the addition of the sequences defined by $\left(u_{n}\right)+\left(v_{n}\right)=\left(u_{n}+v_{n}\right)$ and the multiplication by a réel number $\lambda \cdot\left(u_{n}\right)=\left(\lambda \times u_{n}\right)$
$-E_{4}=\{f:[0,1] \longrightarrow \mathbb{R}\}$: the set of real-valued functions defined on the interval $[0,1]$, with addition of the functions $f+g$ and multiplication by a real number $\lambda \cdot f$.

Exercise 2 Study in which cases \mathbb{R}^{2} is a vector space on \mathbb{R} for the laws noted respectively \oplus and \otimes :

1. $\forall(x, y),(s, t) \in \mathbb{R}^{2}, \forall \alpha \in \mathbb{R}$

$$
(x, y) \oplus(s, t)=(x+y, s+t) ; \quad \alpha \otimes(x, y)=(\alpha x, \alpha y)
$$

2. $\forall(x, y),(s, t) \in \mathbb{R}^{2}, \forall \alpha \in \mathbb{R}$

$$
(x, y) \oplus(s, t)=(x+s, y+t) ; \quad \alpha \otimes(x, y)=(\alpha x, 0)
$$

3. $\forall(x, y),(s, t) \in \mathbb{R}^{2}, \forall \alpha \in \mathbb{R}$

$$
(x, y) \oplus(s, t)=(x . s, y . t) ; \quad \alpha \otimes(x, y)=(\alpha x, \alpha y)
$$

Exercise 3 In each of the following cases, say whether E_{i} is a subspace of E.

1. $E=\mathbb{R}^{2}$,

$$
\begin{aligned}
& E_{1}=\left\{(x, y) \in \mathbb{R}^{2} / x+y=1\right\}, \quad E_{2}=\left\{(x, y) \in \mathbb{R}^{2} / 2 x+3 y=0\right\}, \\
& E_{3}=\left\{(x, y) \in \mathbb{R}^{2} / x y \leq 0\right\}, \quad E_{4}=\left\{(x, y) \in \mathbb{R}^{2} / x \leq y\right\} \\
& E_{5}=\{(2 x, 3 x) / \quad x \in \mathbb{R}\}
\end{aligned}
$$

2. $E=\mathcal{C}(\mathbb{R}, \mathbb{R})$,

$$
E_{1}=\{f \in E / f(1)=f(0)\}, \quad E_{2}=\{f \in E / f(1)-2 f(0)=0\}
$$

3. $E=\mathbb{R}_{2}[X]=\left\{P=a X^{2}+b X+c / a, b, c \in \mathbb{R}\right\}$

$$
E_{1}=\left\{P \in E / P^{\prime}(0)=2\right\}, \quad E_{2}=\left\{P \in E \quad / \quad P^{\prime}(x) \geq 0, \quad \forall x \in \mathbb{R}\right\}
$$

2.Vector families

Exercise 4 Specify whether the following vectors $\left\{e_{1}, \cdots\right\}$ form a linearly independent or generating family. Express, if possible, the vector a as a linear combination of the vectors e_{1}, e_{2}, e_{3} of E, in each of the following cases

1. $E=\mathbb{R}, e_{1}=3$.
2. $E=\mathbb{R}^{2}, e_{1}=(1,1), e_{2}=(-1,2), e_{3}=(1,0), \quad a=(2,4)$.
3. $E=\mathbb{R}^{2}, e_{1}=(1,1), e_{2}=(-1,-1), e_{3}=(2,2), \quad a=(1,0)$.
4. $E=\mathbb{R}^{3}, e_{1}=(1,1,0), e_{2}=(1,0,1), e_{3}=(0,1,1), \quad a=(1,1,1)$.
5. $E=\mathbb{R}_{2}[X], e_{1}=1+3 X, e_{2}=X^{2}-X, e_{3}=X^{2}+1, \quad a=X^{2}+X+1, \quad a=X^{3}$.
6. $E=\mathcal{C}(\mathbb{R}, \mathbb{R}), e_{1}: x \mapsto x, \quad e_{2}: x \mapsto \cos x, \quad e_{3}: x \mapsto \sin x . \quad a: x \mapsto \cos ^{2} x$.

Exercise 5 In the vector space \mathbb{R}^{3}, we consider the two families of vectors :

$$
A=\left\{v_{1}(2,0,-1), v_{2}(3,2,-4)\right\}, \text { and } B=\left\{w_{1}(1,2,-3), w_{2}(0,4,-5)\right\}
$$

$-\operatorname{Show}$ that $\operatorname{span}(A)=\operatorname{span}(B)$
Exercise 6 In the vector space \mathbb{R}^{4}, we consider the vectors

$$
v_{1}=(1,1,1,1), v_{2}=(0,1,2,1), v_{3}=(1,0,-2,3) \text { and } \quad v_{4}=(1,1,2,-2) .
$$

1. Determine the rank of the family $A=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$. Is the set A linearly independent?
2. Determine real numbers α and β so that the vector $u=(1,1, \alpha, \beta) \in \operatorname{span}(A)$.
