Algebra tutorial series 1 (continued)

Exercise 1 Consider the two vector spaces of \mathbb{R}^{3}

$$
\begin{gathered}
E=\left\{(x, y, z) \in \mathbb{R}^{3} / \quad x+z=0 \quad \text { and } \quad x+y-2 z=0 .\right\} \\
F=\operatorname{span}\{u, v\}, \quad u=(1,-2,1), v=(2,0,1) .
\end{gathered}
$$

1. Determine a basis and the dimension of each of the subspaces : $E, F, E \cap F$ and $E+F$.
2. Do we have $\mathbb{R}^{3}=E \oplus F$?
3. Verify that $u=(2,-6,-2) \in E$ and determine the coordinate of the vector u in the basis of E.

Exercise 2 Consider the following polynomials in $\mathbb{R}_{2}[X]$:

$$
P_{1}=X+1, \quad P_{2}=X^{2}-1, \quad P_{3}=X^{2}-2 X+1, \quad P_{4}=-X^{2}+X+6 .
$$

1. Show that $B=\left\{P_{1}, P_{2}, P_{3}\right\}$ is a basis of $\mathbb{R}_{2}[X]$.
2. Determine the coordinates of P_{4} in the base B.

Exercise 3 Let's consider $E=\mathbb{R}^{3}$.
Prove that $F=\left\{(x, y, z) \in \mathbb{R}^{3} / \quad x-y+z=0\right\}$ and $G=\left\{(x, x, x) \in \mathbb{R}^{3}\right\}$ are complements in E (i.e. $\mathbb{R}^{3}=F \oplus G$).

Exercise 4 Consider the vectors of $\mathbb{R}^{4}: u=(1,-2,4,1)$ and $v=(1,0,0,2)$.

1. Determine Vect (u, v).
2. Complete the set (u, v) adding two vectors of the canonical basis of \mathbb{R}^{4} in order to have a basis of \mathbb{R}^{4}.
3. In \mathbb{R}^{3}, let $u=(2,3,5), v=(4,6,10)$ and $w=(-2,-3,-5)$. Find $r g(u, v, w)$.
