Algebra tutorial series 1 (continued)

Exercise 1 Consider the two vector spaces of \mathbb{R}^3

$$E = \{(x, y, z) \in \mathbb{R}^3 / x + z = 0 \text{ and } x + y - 2z = 0.\}$$

 $F = span \{u, v\}, \quad u = (1, -2, 1), v = (2, 0, 1).$

- 1. Determine a basis and the dimension of each of the subspaces : $E, F, E \cap F$ and E + F.
- 2. Do we have $\mathbb{R}^3 = E \oplus F$?
- 3. Verify that $u = (2, -6, -2) \in E$ and determine the coordinate of the vector u in the basis of E.

Exercise 2 Consider the following polynomials in $\mathbb{R}_2[X]$:

$$P_1 = X + 1, \quad P_2 = X^2 - 1, \quad P_3 = X^2 - 2X + 1, \quad P_4 = -X^2 + X + 6.$$

- 1. Show that $B = \{P_1, P_2, P_3\}$ is a basis of $\mathbb{R}_2[X]$.
- 2. Determine the coordinates of P_4 in the base B.

Exercise 3 Let's consider $E = \mathbb{R}^3$. Prove that $F = \{(x, y, z) \in \mathbb{R}^3 / x - y + z = 0\}$ and $G = \{(x, x, x) \in \mathbb{R}^3\}$ are complements in E (i.e. $\mathbb{R}^3 = F \oplus G$).

Exercise 4 Consider the vectors of \mathbb{R}^4 : u = (1, -2, 4, 1) and v = (1, 0, 0, 2).

- 1. Determine Vect(u, v).
- 2. Complete the set (u, v) adding two vectors of the canonical basis of \mathbb{R}^4 in order to have a basis of \mathbb{R}^4 .
- 3. In \mathbb{R}^3 , let u = (2, 3, 5), v = (4, 6, 10) and w = (-2, -3, -5). Find rg(u, v, w).