Algebra tutorial series 3

Exercise 1 Are the following maps of E into F linear? If so, determine a basis of the nullspace (kernel) and a basis of the range.

1. $E=F=\mathbb{R}^{2}, \forall(x, y) \in \mathbb{R}^{2}, f(x, y)=(2 x+3 y, x)$.
2. $E=F=\mathbb{R}^{2}, \forall(x, y) \in \mathbb{R}^{2}, f(x, y)=(y, x+y+1)$.
3. $E=\mathbb{R}^{3}, F=\mathbb{R}, \forall(x, y, z) \in \mathbb{R}^{3}, f(x, y, z)=x+2 y+z$.
4. $E=F=\mathbb{R}^{2}, \forall(x, y) \in \mathbb{R}^{2}, f(x, y)=(x+y, x y)$.
5. $E=F=\mathbb{R}, \forall x \in \mathbb{R}, f(x)=x^{2}$.

Exercise 2 In each case, give the dimension of the nullspace of f, then the rank of f.
Is f injective? surjective? bijective?

1. $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, \quad f(x, y, z)=(y, z, x)$.
2. $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, \quad f(x, y, z)=(x+y, y+z, x-z)$.
3. (Left to students) $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, \quad f(x, y, z)=(2 x+m y-z, 2 x+2 y, x-2 z)$, according to the value of the parameter m.

Exercise 3 Let $\mathbb{R}_{4}[X]$ be the set of polynomials with real coefficients of degree less than or equal to 4 . Show that the map f of $\mathbb{R}_{4}[X]$ in itself, defined by $f(P)=P-P^{\prime}$ is linear.
Is the map f injective? surjective?
Exercise 4 Let

$$
A=\left(\begin{array}{ccc}
-1 & 1 & 1 \\
1 & -1 & 1 \\
1 & 1 & -1
\end{array}\right), \quad I_{3}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

1. Compute $A+I_{3}, A^{2}$.
2. Show that $A^{2}=2 I_{3}-A$.
3. Express A^{-1} in terms of A and I_{3}.
4. Find A^{-1} using the augmented matrix $[A \mid I]$ and the reduced echelon form.

Exercise 5 1. Find the rank of matrix A by using the row echelon form.

$$
A=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 4 \\
3 & 0 & 5
\end{array}\right)
$$

2. Represent the following linear system in a matrix equation of the form $A x=b$.

$$
\left\{\begin{array}{ccc}
-x-3 y+z & = & 10 \\
x+y-3 z & = & -12 \\
3 x+4 y+2 z & = & -5
\end{array}\right.
$$

Solve the above system using the echelon method.

