
Sorting Algorithms

SEDDIK Mohamed Taki Eddine

Batna 2 UNIVERSITY
Faculty of Mathematics and Computer Science

Department of Computer Science

November 9, 2023

Introduction to Sorting Algorithms
Detailed Sorting Algorithms

Conclusion

SORTING ALGORITHMS OUTLINE I

1 Introduction to Sorting Algorithms

2 Detailed Sorting Algorithms
Selection Sort
Bubble Sort
Insertion Sort
Merge Sort
Quick Sort

3 Conclusion

SEDDIK M.T. Sorting Algorithms 1 / 38

Introduction to Sorting Algorithms
Detailed Sorting Algorithms

Conclusion

Introduction to Sorting Algorithms

What is Sorting?

Sorting refers to the process of arranging data (often numbers
or words) in a particular sequence or order, either in ascending
or descending form.

Why is it Important?
It’s a fundamental operation in computer science.
Used in numerous applications, like database algorithms,
for better search performance.
Provides a foundation to understand algorithm efficiency
and design.

SEDDIK M.T. Sorting Algorithms 2 / 38

Introduction to Sorting Algorithms
Detailed Sorting Algorithms

Conclusion

Types of Sorting Algorithms

Various Algorithms
There are numerous ways to sort data, each with its
advantages and challenges:

Bubble Sort
Selection Sort
Insertion Sort
Merge Sort
Quick Sort
... and many more.

SEDDIK M.T. Sorting Algorithms 3 / 38

Introduction to Sorting Algorithms
Detailed Sorting Algorithms

Conclusion

Types of Sorting Algorithms

Factors to Consider
Time complexity
Space complexity
Stability
Internal vs External sorting

SEDDIK M.T. Sorting Algorithms 4 / 38

Introduction to Sorting Algorithms
Detailed Sorting Algorithms

Conclusion

Goals for this Chapter

What we aim to achieve
Understand the mechanics of each sorting algorithm.
Compare and contrast the performance of different
algorithms.
Choose the right algorithm for the right job.
Implement some of the primary sorting algorithms.

SEDDIK M.T. Sorting Algorithms 5 / 38

Introduction to Sorting Algorithms
Detailed Sorting Algorithms

Conclusion

Selection Sort
Bubble Sort
Insertion Sort
Merge Sort
Quick Sort

Selection Sort

Steps to Perform Selection Sort
1 Start with the first element as the minimum.
2 Traverse through the list to find the minimum element.
3 Swap the first element with the found minimum.
4 Take the next element as minimum and repeat.

SEDDIK M.T. Sorting Algorithms 6 / 38

Introduction to Sorting Algorithms
Detailed Sorting Algorithms

Conclusion

Selection Sort
Bubble Sort
Insertion Sort
Merge Sort
Quick Sort

Example

Sorting an Array

Original Array: arr = [64,34,25,12,22,11,90]
1st pass: arr = [11,34,25,12,22,64,90]

2nd pass: arr = [11,12,25,34,22,64,90]
3rd pass: arr = [11,12,25,22,34,64,90]

Sorted Array: arr = [11,12,25,22,34,64,90]

SEDDIK M.T. Sorting Algorithms 7 / 38

Introduction to Sorting Algorithms
Detailed Sorting Algorithms

Conclusion

Selection Sort
Bubble Sort
Insertion Sort
Merge Sort
Quick Sort

Time Complexity

Understanding the Complexity
For every element, we compare:

1st element with n − 1 elements.
2nd element with n − 2 comparisons.
And so on...

This forms an arithmetic series:

(n − 1) + (n − 2) + ...+ 3 + 2 + 1

SEDDIK M.T. Sorting Algorithms 8 / 38

Introduction to Sorting Algorithms
Detailed Sorting Algorithms

Conclusion

Selection Sort
Bubble Sort
Insertion Sort
Merge Sort
Quick Sort

Time Complexity (cont’d)

Calculating the Sum
The sum is:

(n − 1)(n)
2

=
n2 − n

2
Time complexity is dominated by the highest order term:
O(n2)

SEDDIK M.T. Sorting Algorithms 9 / 38

Introduction to Sorting Algorithms
Detailed Sorting Algorithms

Conclusion

Selection Sort
Bubble Sort
Insertion Sort
Merge Sort
Quick Sort

Algorithm in C
#include < s t d i o . h>

void s e l e c t i o n S o r t (i n t a r r [] , i n t n) {
for (i n t i = 0 ; i < n−1; i ++) {

i n t min_idx = i ;
for (i n t j = i +1; j < n ; j ++) {

i f (a r r [j] < a r r [min_idx]) {
min_idx = j ;

}
}
i n t temp = a r r [min_idx] ;
a r r [min_idx] = a r r [i] ;
a r r [i] = temp ;

}
}

i n t main () {
i n t a r r [] = {64 , 34 , 25 , 12 , 22 , 11 , 90 } ;
i n t n = sizeof (a r r) / sizeof (a r r [0]) ;
s e l e c t i o n S o r t (ar r , n) ;
for (i n t i = 0 ; i < n ; i ++) {

p r i n t f ("%d " , a r r [i]) ;
}
return 0;

}

SEDDIK M.T. Sorting Algorithms 10 / 38

Introduction to Sorting Algorithms
Detailed Sorting Algorithms

Conclusion

Selection Sort
Bubble Sort
Insertion Sort
Merge Sort
Quick Sort

Conclusion

Summary

Selection Sort has a time complexity of O(n2).
Simple, but not always efficient.
Suitable for smaller lists or specific use-cases.

SEDDIK M.T. Sorting Algorithms 11 / 38

Introduction to Sorting Algorithms
Detailed Sorting Algorithms

Conclusion

Selection Sort
Bubble Sort
Insertion Sort
Merge Sort
Quick Sort

Bubble Sort Algorithm

Steps to Perform Bubble Sort
1 Start from the first element.
2 Compare the current element with the next element.
3 If current element > next element, swap them.
4 Move to the next element and repeat until the end of the

array.
5 Repeat the process for each element.

SEDDIK M.T. Sorting Algorithms 12 / 38

Introduction to Sorting Algorithms
Detailed Sorting Algorithms

Conclusion

Selection Sort
Bubble Sort
Insertion Sort
Merge Sort
Quick Sort

Example

Sorting an Array

Original Array: arr = [64,34,25,12,22,11,90]
1st pass: arr = [34,25,12,22,11,64,90]

2nd pass: arr = [25,12,22,11,34,64,90]
3rd pass: arr = [12,22,11,25,34,64,90]

Sorted Array: arr = [11,12,22,25,34,64,90]

SEDDIK M.T. Sorting Algorithms 13 / 38

Introduction to Sorting Algorithms
Detailed Sorting Algorithms

Conclusion

Selection Sort
Bubble Sort
Insertion Sort
Merge Sort
Quick Sort

Time Complexity

Understanding the Complexity
For every element, we compare:

1st pass requires n − 1 comparisons.
2nd pass requires n − 2 comparisons.
And so on...

This forms an arithmetic series:

(n − 1) + (n − 2) + ...+ 3 + 2 + 1

SEDDIK M.T. Sorting Algorithms 14 / 38

Introduction to Sorting Algorithms
Detailed Sorting Algorithms

Conclusion

Selection Sort
Bubble Sort
Insertion Sort
Merge Sort
Quick Sort

Time Complexity (cont’d)

Calculating the Sum
The sum is:

(n − 1)(n)
2

=
n2 − n

2
Time complexity is dominated by the highest order term:
O(n2)

SEDDIK M.T. Sorting Algorithms 15 / 38

Introduction to Sorting Algorithms
Detailed Sorting Algorithms

Conclusion

Selection Sort
Bubble Sort
Insertion Sort
Merge Sort
Quick Sort

Algorithm in C

#include < s t d i o . h>

void bubbleSort (i n t a r r [] , i n t n) {
for (i n t i = 0 ; i < n−1; i ++) {

for (i n t j = 0 ; j < n− i −1; j ++) {
i f (a r r [j] > a r r [j +1]) {

i n t temp = a r r [j] ;
a r r [j] = a r r [j + 1] ;
a r r [j +1] = temp ;

}
}

}
}

i n t main () {
i n t a r r [] = {64 , 34 , 25 , 12 , 22 , 11 , 90 } ;
i n t n = sizeof (a r r) / sizeof (a r r [0]) ;
bubbleSort (ar r , n) ;
for (i n t i = 0 ; i < n ; i ++) {

p r i n t f ("%d " , a r r [i]) ;
}
return 0;

}

SEDDIK M.T. Sorting Algorithms 16 / 38

Introduction to Sorting Algorithms
Detailed Sorting Algorithms

Conclusion

Selection Sort
Bubble Sort
Insertion Sort
Merge Sort
Quick Sort

Conclusion

Summary

Bubble Sort has a time complexity of O(n2).
It’s intuitive but often less efficient than other sorting
algorithms.
Suitable for educational purposes and smaller lists.

SEDDIK M.T. Sorting Algorithms 17 / 38

Introduction to Sorting Algorithms
Detailed Sorting Algorithms

Conclusion

Selection Sort
Bubble Sort
Insertion Sort
Merge Sort
Quick Sort

Introduction to Insertion Sort

What is Insertion Sort?
Insertion Sort is a simple sorting algorithm that builds the final
sorted array one item at a time. It is similar to the way we sort
playing cards in our hands.

Characteristics of Insertion Sort
Stable sort
Adaptive: becomes faster when the list is partially sorted.
Time complexity: O(n2) in the worst case, but can be much
faster for nearly sorted data.
Space complexity: O(1) additional memory.

SEDDIK M.T. Sorting Algorithms 18 / 38

Introduction to Sorting Algorithms
Detailed Sorting Algorithms

Conclusion

Selection Sort
Bubble Sort
Insertion Sort
Merge Sort
Quick Sort

How Insertion Sort Works

Steps of Insertion Sort
1 Start from the second element (assume the first element is

sorted).
2 Compare the current element with the previous elements.

If the current element is smaller than the previous element,
compare it with the elements before the previous one.
Continue this process until you reach a position where the
current element is greater, or until you reach the beginning
of the array.

3 Insert the current element at the found position.
4 Repeat for all elements.

SEDDIK M.T. Sorting Algorithms 19 / 38

Introduction to Sorting Algorithms
Detailed Sorting Algorithms

Conclusion

Selection Sort
Bubble Sort
Insertion Sort
Merge Sort
Quick Sort

Example

Sorting a List Using Insertion Sort

Original List: [8,4,23,42,16,15]
Insert 4: [4,8,23,42,16,15]

Insert 23: [4,8,23,42,16,15]
Insert 42: [4,8,23,42,16,15]
Insert 16: [4,8,16,23,42,15]
Insert 15: [4,8,15,16,23,42]

SEDDIK M.T. Sorting Algorithms 20 / 38

Introduction to Sorting Algorithms
Detailed Sorting Algorithms

Conclusion

Selection Sort
Bubble Sort
Insertion Sort
Merge Sort
Quick Sort

Algorithm in C
#include < s t d i o . h>
void i n s e r t i o n S o r t (i n t a r r [] , i n t n) {

i n t i , j , key ;
for (i = 1 ; i < n ; i ++) {

key = a r r [i] ;
j = i − 1 ;
while (j >= 0 && a r r [j] > key) {

a r r [j + 1] = a r r [j] ;
j = j − 1 ;

}
a r r [j + 1] = key ;

}
}
i n t main () {

i n t a r r [] = {12 , 11 , 13 , 5 , 6 } ;
i n t n = sizeof (a r r) / sizeof (a r r [0]) ;
i n s e r t i o n S o r t (ar r , n) ;
p r i n t f (" Sorted ar ray : \ n ") ;
for (i n t i = 0 ; i < n ; i ++) {

p r i n t f ("%d " , a r r [i]) ;
}
p r i n t f (" \ n ") ;

return 0;
}

SEDDIK M.T. Sorting Algorithms 21 / 38

Introduction to Sorting Algorithms
Detailed Sorting Algorithms

Conclusion

Selection Sort
Bubble Sort
Insertion Sort
Merge Sort
Quick Sort

Conclusion

Summing Up

Insertion Sort is intuitive and simple, making it suitable for
small lists or partially sorted data.
It’s an in-place, stable sort.
While it has a quadratic worst-case time complexity, it often
performs well for small datasets or nearly sorted data.

SEDDIK M.T. Sorting Algorithms 22 / 38

Introduction to Sorting Algorithms
Detailed Sorting Algorithms

Conclusion

Selection Sort
Bubble Sort
Insertion Sort
Merge Sort
Quick Sort

Introduction to Merge Sort

What is Merge Sort?

Merge Sort is a Divide and Conquer algorithm. It works by
recursively splitting a list in half. Once you have single-element
lists, you merge them back together in a sorted manner.

Features of Merge Sort

Stable sort
External and Internal sorting
Time complexity: O(n log n)
Space complexity: O(n) (due to the merging process)

SEDDIK M.T. Sorting Algorithms 23 / 38

Introduction to Sorting Algorithms
Detailed Sorting Algorithms

Conclusion

Selection Sort
Bubble Sort
Insertion Sort
Merge Sort
Quick Sort

How Does It Work?

Steps of Merge Sort
1 Divide the unsorted list into n sublists, each containing one

element.
2 Repeatedly merge sublists to produce newly sorted

sublists until there is only one sublist remaining.

SEDDIK M.T. Sorting Algorithms 24 / 38

Introduction to Sorting Algorithms
Detailed Sorting Algorithms

Conclusion

Selection Sort
Bubble Sort
Insertion Sort
Merge Sort
Quick Sort

Example

Sorting a List

Original List: [38,27,43,3,9,82,10]
Splitting: [38,27] [43,3] [9,82] [10]
Merging: [27,38] [3,43] [9,82]

Merge Again: [3,27,38,43] [9,10,82]
Final Merge: [3,9,10,27,38,43,82]

SEDDIK M.T. Sorting Algorithms 25 / 38

Introduction to Sorting Algorithms
Detailed Sorting Algorithms

Conclusion

Selection Sort
Bubble Sort
Insertion Sort
Merge Sort
Quick Sort

Algorithm in C

#include < s t d i o . h>

void merge (i n t a r r [] , i n t l , i n t m, i n t r) ;
void mergeSort (i n t a r r [] , i n t l , i n t r) ;

i n t main () {
i n t a r r [] = {38 , 27 , 43 , 3 , 9 , 82 , 10 } ;
i n t n = sizeof (a r r) / sizeof (a r r [0]) ;
mergeSort (ar r , 0 , n−1) ;
for (i n t i = 0 ; i < n ; i ++) {

p r i n t f ("%d " , a r r [i]) ;
}
return 0;

}

(Note: This is a partial code; full merge and mergeSort
functions not shown for brevity)

SEDDIK M.T. Sorting Algorithms 26 / 38

Introduction to Sorting Algorithms
Detailed Sorting Algorithms

Conclusion

Selection Sort
Bubble Sort
Insertion Sort
Merge Sort
Quick Sort

Conclusion

Summary

Merge Sort is efficient with a time complexity of O(n log n).
It’s a stable sort and works well for large datasets.
The primary drawback is the additional space requirement
of O(n).

SEDDIK M.T. Sorting Algorithms 27 / 38

Introduction to Sorting Algorithms
Detailed Sorting Algorithms

Conclusion

Selection Sort
Bubble Sort
Insertion Sort
Merge Sort
Quick Sort

Introduction to Quick Sort

What is Quick Sort?
Quick Sort is a Divide and Conquer algorithm. It picks an
element as a "pivot" and partitions the array so that all smaller
elements come before the pivot and all larger elements come
after it. This process is recursively applied to the sub-arrays.

Key Features of Quick Sort
Not stable by default
In-place sorting
Time complexity: O(n2) worst case, but O(n log n) on
average
Space complexity: O(log n) due to recursive call stack

SEDDIK M.T. Sorting Algorithms 28 / 38

Introduction to Sorting Algorithms
Detailed Sorting Algorithms

Conclusion

Selection Sort
Bubble Sort
Insertion Sort
Merge Sort
Quick Sort

Working Principle

Steps of Quick Sort
1 Choose a ’pivot’ element from the array.
2 Rearrange the elements using the pivot, such that

elements smaller than pivot are on the left, and elements
greater than pivot are on the right.

3 Recursively apply the above steps to the sub-array of
elements with smaller values and the sub-array of
elements with greater values.

SEDDIK M.T. Sorting Algorithms 29 / 38

Introduction to Sorting Algorithms
Detailed Sorting Algorithms

Conclusion

Selection Sort
Bubble Sort
Insertion Sort
Merge Sort
Quick Sort

Example

Sorting a List

Original List: [9,7,5,11,12,2,14,3,10,6]
Choosing pivot (e.g., last element): [9,7,5,11,12,2,14,3,10,6]

After 1st partition: [5,2,3,6,12,7,14,9,10,11]

(Note: This process is recursively applied to sub-arrays)

SEDDIK M.T. Sorting Algorithms 30 / 38

Introduction to Sorting Algorithms
Detailed Sorting Algorithms

Conclusion

Selection Sort
Bubble Sort
Insertion Sort
Merge Sort
Quick Sort

Algorithm in C

void merge (i n t a r r [] , i n t l , i n t m, i n t r)
{

i n t i , j , k ;
i n t n1 = m − l + 1 ;
i n t n2 = r − m;
i n t L [n1] , R[n2] ;
for (i = 0 ; i < n1 ; i ++)

L [i] = a r r [l + i] ;
for (j = 0 ; j < n2 ; j ++)

R[j] = a r r [m + 1 + j] ;
i = 0 ;
j = 0 ;
k = l ;
while (i < n1 && j < n2) {

i f (L [i] <= R[j]) {
a r r [k] = L [i] ;
i ++;

} else {
a r r [k] = R[j] ;
j ++ ; }

k ++ ; }
while (i < n1) {

a r r [k] = L [i] ;
i ++;
k ++; }

while (j < n2) {
a r r [k] = R[j] ;
j ++;
k + + ; } }

void mergeSort (i n t a r r [] , i n t l , i n t r) {
i f (l < r) {

i n t m = l + (r − l) / 2 ;
mergeSort (ar r , l , m) ;
mergeSort (ar r , m + 1 , r) ;
merge (ar r , l , m, r) ; } }

i n t main () {
i n t a r r [] = {12 , 11 , 13 , 5 , 6 , 7 } ;
i n t a r r_s i ze = sizeof (a r r) / sizeof (

a r r [0]) ;
p r i n t f (" Given ar ray i s \ n ") ;
for (i n t i = 0 ; i < a r r_s i ze ; i ++) {

p r i n t f ("%d " , a r r [i]) ; }
p r i n t f (" \ n ") ;
mergeSort (ar r , 0 , a r r_s i ze − 1) ;
p r i n t f (" Sorted ar ray i s \ n ") ;
for (i n t i = 0 ; i < a r r_s i ze ; i ++) {

p r i n t f ("%d " , a r r [i]) ; }
p r i n t f (" \ n ") ;
return 0 ; }
}

SEDDIK M.T. Sorting Algorithms 31 / 38

Introduction to Sorting Algorithms
Detailed Sorting Algorithms

Conclusion

Selection Sort
Bubble Sort
Insertion Sort
Merge Sort
Quick Sort

Conclusion

In Summary
Quick Sort is generally faster in practice compared to other
O(n log n) algorithms, such as Merge Sort.
It’s an in-place sort (requires minimal additional memory).
The primary concern is its worst-case scenario, which can
be mitigated using randomized or median-of-three pivoting.

SEDDIK M.T. Sorting Algorithms 32 / 38

Introduction to Sorting Algorithms
Detailed Sorting Algorithms

Conclusion

Selection Sort
Bubble Sort
Insertion Sort
Merge Sort
Quick Sort

Introduction to Quick Sort

What is Quick Sort?
Quick Sort is a Divide and Conquer algorithm. It picks an
element as a "pivot" and partitions the array so that all smaller
elements come before the pivot and all larger elements come
after it. This process is recursively applied to the sub-arrays.

Key Features of Quick Sort
Not stable by default
In-place sorting
Time complexity: O(n2) worst case, but O(n log n) on
average
Space complexity: O(log n) due to recursive call stack

SEDDIK M.T. Sorting Algorithms 33 / 38

Introduction to Sorting Algorithms
Detailed Sorting Algorithms

Conclusion

Selection Sort
Bubble Sort
Insertion Sort
Merge Sort
Quick Sort

Working Principle

Steps of Quick Sort
1 Choose a ’pivot’ element from the array.
2 Rearrange the elements using the pivot, such that

elements smaller than pivot are on the left, and elements
greater than pivot are on the right.

3 Recursively apply the above steps to the sub-array of
elements with smaller values and the sub-array of
elements with greater values.

SEDDIK M.T. Sorting Algorithms 34 / 38

Introduction to Sorting Algorithms
Detailed Sorting Algorithms

Conclusion

Selection Sort
Bubble Sort
Insertion Sort
Merge Sort
Quick Sort

Example

Sorting a List

Original List: [9,7,5,11,12,2,14,3,10,6]
Choosing pivot (e.g., last element): [9,7,5,11,12,2,14,3,10,6]

After 1st partition: [5,2,3,6,12,7,14,9,10,11]

(Note: This process is recursively applied to sub-arrays)

SEDDIK M.T. Sorting Algorithms 35 / 38

Introduction to Sorting Algorithms
Detailed Sorting Algorithms

Conclusion

Selection Sort
Bubble Sort
Insertion Sort
Merge Sort
Quick Sort

Algorithm in C

#include < s t d i o . h>
void swap (i n t * a , i n t * b) {

i n t t = *a ; *a = *b ; *b = t ; }
i n t p a r t i t i o n (i n t a r r [] , i n t low , i n t high) {

i n t p i v o t = a r r [h igh] ;
i n t i = (low − 1) ;
for (i n t j = low ; j <= high − 1; j ++) {

i f (a r r [j] < p i v o t) {
i ++;
swap(& a r r [i] , &a r r [j]) ; } }

swap(& a r r [i + 1] , &a r r [h igh]) ;
return (i + 1) ; }

void qu ickSor t (i n t a r r [] , i n t low , i n t high) {
i f (low < high) {

i n t p i = p a r t i t i o n (ar r , low , high) ;
qu ickSor t (ar r , low , p i − 1) ;
qu ickSor t (ar r , p i + 1 , high) ; } }

i n t main () {
i n t a r r [] = {10 , 7 , 8 , 9 , 1 , 5 } ;
i n t n = sizeof (a r r) / sizeof (a r r [0]) ;
qu ickSor t (ar r , 0 , n−1) ;
for (i n t i =0; i <n ; i ++) p r i n t f ("%d " , a r r [i]) ;
return 0 ; } }

SEDDIK M.T. Sorting Algorithms 36 / 38

Introduction to Sorting Algorithms
Detailed Sorting Algorithms

Conclusion

Selection Sort
Bubble Sort
Insertion Sort
Merge Sort
Quick Sort

Conclusion

In Summary
Quick Sort is generally faster in practice compared to other
O(n log n) algorithms, such as Merge Sort.
It’s an in-place sort (requires minimal additional memory).
The primary concern is its worst-case scenario, which can
be mitigated using randomized or median-of-three pivoting.

SEDDIK M.T. Sorting Algorithms 37 / 38

Introduction to Sorting Algorithms
Detailed Sorting Algorithms

Conclusion

Conclusion: Sorting Algorithms
Selection Sort

In-place

O(n2)

Bubble Sort
Adaptive

O(n2)

Insertion Sort
Adaptive

O(n2)

Merge Sort
Divide & Conquer

O(n log n)

Quick Sort
Partitioning

O(n2) worst

Key Points
Different algorithms suit different tasks and data.
Stability and in-place characteristics can be important.
Always consider the specific use-case when choosing an
algorithm.

SEDDIK M.T. Sorting Algorithms 38 / 38

	Introduction to Sorting Algorithms
	Detailed Sorting Algorithms
	Selection Sort
	Bubble Sort
	Insertion Sort
	Merge Sort
	Quick Sort

	Conclusion

