Answer key for tutorial 1 (continued). Algebra 2

Exercise 1 1. $E=\left\{(x, y, z) \in \mathbb{R}^{3} / x+z=0, \quad x+y-2 z=0\right\}=\left\{(x, y, z) \in \mathbb{R}^{3} / z=-x, y=-3 x\right\}=$ $\left\{(x,-3 x,-x) \in \mathbb{R}^{3} / x \in \mathbb{R}\right\}=\{x(1,-3,-1) / x \in \mathbb{R}\}$
$E=V e c t\{w=(1,-3,-1)\}$.
$\{w=(1,-3,-1)\}$ is linearly independent because $(1,-3,1) \neq(0,0,0)$. Then $\operatorname{dim} E=1$.
2. $F=\operatorname{span}\{u=(1,-2,1), v=(2,0,1)\}$ is linearly independent :
$\forall \alpha, \beta \in \mathbb{R} / \alpha u+\beta v=0_{\mathbb{R}^{3}} \Longrightarrow \alpha(1,-2,1)+\beta(2,0,1)=(0,0,0)$
then $(\alpha+2 \beta,-2 \alpha, \alpha+\beta)=(0,0,0) \Longrightarrow \alpha=\beta=0$. Then $\{u, v\}$ is a basis of F and so $\operatorname{dim} F=2$.
3. $E \cap F=\left\{(x, y, z) \in \mathbb{R}^{3} / \quad(x, y, z) \in E \wedge(x, y, z) \in F\right\}$.

Let $a=(x, y, z) \in E \cap F$, then $a \in E$ and $a \in F$, we have $\left\{\begin{array}{c}a \in E \Longleftrightarrow \exists x \in \mathbb{R} / a=(x,-3 x,-x) \\ a \in F \Longleftrightarrow \exists \alpha, \beta \in \mathbb{R} / a=\alpha u+\beta v\end{array}\right.$ $a=\alpha(1,-2,1)+\beta(2,0,1)$ then $(x,-3 x,-x)=(\alpha+2 \beta,-2 \alpha, \alpha+\beta)$
$x=\alpha+2 \beta,-3 x=-2 \alpha$ and $-x=\alpha+\beta$ i.e. $\alpha+2 \beta=-\alpha-\beta$ and $-2 \alpha=3(\alpha+\beta)$ then $\alpha=\beta=0$.
$E \cap F=\{(0,0,0)\}$ and $\operatorname{dim}(E \cap F)=0$.
4. $E+F=\left\{X+X^{\prime} / X \in E\right.$ and $\left.X^{\prime} \in F\right\}=\operatorname{span}\{w, u, v\}$.

We can verify that $\{w, u, v\}$ is linearly independent then $\{w, u, v\}$ is a basis of $E+F$. $\operatorname{dim} E+F=3$.
We have also $\operatorname{dim}(E+F)=\operatorname{dim}(E)+\operatorname{dim}(F)-\operatorname{dim}(E \cap F)=1+2-0=3$
5. $\mathbb{R}^{3}=E+F$ Indeed :
$E+F \subset \mathbb{R}^{3}$ (because $E \subset \mathbb{R}^{3}$ and $F \subset \mathbb{R}^{3}$,) and $\operatorname{dim} \mathbb{R}^{3}=\operatorname{dim}(E+F)$ then $\mathbb{R}^{3}=E+F$.
We have $\mathbb{R}^{3}=E+F$ and $E \cap F=\{(0,0,0)\}$ then $\mathbb{R}^{3}=E \oplus F$.
$u=2(1,-3,-1)=2 w \in E$, then the coordinate of the vector u in the basis $\{w\}$ is 2 .

Exercise 2

$E=\mathbb{R}_{2}[X], P_{1}=X+1, P_{2}=X^{2}-1, P_{3}=X^{2}-2 X+1$.
$\left\{P_{1}, P_{2}, P_{3}\right\}$ is linearly independent: $\forall \alpha, \beta, \gamma, \in \mathbb{R}, \alpha P_{1}+\beta P_{2}+\gamma P_{3}=0_{\mathbb{R}_{2}[x]} \Rightarrow \alpha=\beta=\gamma=0$
We have : $\alpha(X+1)+\beta\left(X^{2}-1\right)+\gamma\left(X^{2}-2 X+1\right)=0 X^{2}+0 X+0 \Rightarrow(\beta+\gamma) X^{2}+(\alpha-2 \gamma) X+(\alpha-\beta+\gamma)=$ $0 X^{2}+0 X+0$, which gives :
$\beta+\gamma=0, \quad \alpha-2 \gamma=0$ and $\alpha-\beta+\gamma=0$ and so $\alpha=\beta=\gamma=0$.
$\left\{P_{1}, P_{2}, P_{3}\right\}$ a generating family : $\forall P=a X^{2}+b X+C \in \mathbb{R}_{2}[X], \exists \alpha, \beta, \gamma, \in \mathbb{R} / \quad P=\alpha P_{1}+\beta P_{2}+\gamma P_{3}$ Indeed:
$a X^{2}+b X+C=\alpha(X+1)+\beta\left(X^{2}-1\right)+\gamma\left(X^{2}-2 X+1\right)=(\beta+\gamma) X^{2}+(\alpha-2 \gamma) X+(\alpha-\beta+\gamma)=a X^{2}+b X+c$, which gives:
$\beta+\gamma=a, \quad \alpha-2 \gamma=b$ and $\alpha-\beta+\gamma=c$ and so
$\alpha=(1 / 2) a+(1 / 2) b+(1 / 2) c, \quad \beta=(3 / 4) a+(1 / 4) b-(1 / 4) c$ and $\gamma=(1 / 4) a-(1 / 4) b+(1 / 4) c$.
For $P_{4}=-X^{2}+X+6, \quad a=-1, \quad b=1, \quad c=6$, then $\alpha=3, \quad \beta=-2$ and $\gamma=1$ i.e. $-X^{2}+X+6=3(X+1)-2\left(X^{2}-1\right)+\left(X^{2}-2 X+1\right)$.

Exercise $3 F=\left\{(x, y, z) \in \mathbb{R}^{3} / \quad x-y+z=0\right\}$ and $G=\{(x, x, x) / \quad x \in \mathbb{R}\}$. $\mathbb{R}^{3}=F \oplus G$. Indeed :

1. $F=\{(y+z, y, z) / \quad y, z \in \mathbb{R}\}=\{y(1,1,0)+z(1,0,1) / \quad y, z \in \mathbb{R}\}=\operatorname{span}\{u=(1,1,0), v=(1,0,1)\}$. We check that $\{u, v\}$ is linearly indepndent, then we conclude that $\{u, v\}$ is a basis of F and so $\operatorname{dimF}=2$.
2. $G=\operatorname{span}\{w=(1,1,1)\}$. and $\{w=(1,1,1)\}$ is linearly independent because $(1,1,1) \neq(0,0,0)$. Then $\operatorname{dim} G=1$
3. we show that $F \cap G=\{(0,0,0)\}$.

Let $a=(x, y, z) \in F \cap G$, then $a \in F$ and $a \in G$, we have $\left\{\begin{aligned} & a \in F \Longleftrightarrow \exists y, z \in \mathbb{R} / a=(y+z, y, z) \\ & a \in F \Longleftrightarrow \exists x \in \mathbb{R} / a=(x, x, x)\end{aligned}\right.$ then $(x, x, x)=(y+z, y, z)$
we find $x=y=z=0$, so $F \cap G=\{(0,0,0)\}$ and $\operatorname{dim} F \cap G=0$.
4. $\mathbb{R}^{3}=F+G$ Indeed :
$F+G \subset \mathbb{R}^{3}$ because $F \subset \mathbb{R}^{3}$ and $G \subset \mathbb{R}^{3}$, and
$\operatorname{dim}(F+G)=\operatorname{dim} F+\operatorname{dim} G-\operatorname{dim} F \cap G=2+1-0=3=\operatorname{dim} \mathbb{R}^{3}$, then $\mathbb{R}^{3}=F+G$.
We have $\mathbb{R}^{3}=F+G$. and $F \cap G=\{(0,0,0)\}$ then $\mathbb{R}^{3}=F \oplus G$.
Exercise $4 \quad$ 1. $\operatorname{span}(u, v)=\{\alpha(1,-2,4,1)+\beta(1,0,0,2) / \quad \alpha, \beta \in \mathbb{R}\}$ $=\{(\alpha+\beta,-2 \alpha, 4 \alpha, \alpha+2 \beta) / \quad \alpha, \beta \in \mathbb{R}\}$.
2. $B=\left\{u=(1,-2,4,1), v=(1,0,0,2), e_{1}=(1,0,0,0), e_{3}=(0,0,1,0)\right\}$ is linearly independent (to be verified) then B is a basis of $\mathbb{R}^{4} .\left(\operatorname{card}(B)=4=\operatorname{dim} \mathbb{R}^{4}\right)$.
3. $\{u=(2,3,5), v=(4,6,10), w=(-2,-3,-5)\}$ is not linearly independent, then rank $(\{u, v, w\}<4$.
$\{u=(2,3,5), v=(4,6,10)\}$ is not linearly independent, $(v=2 u)$,
$\{u=(2,3,5), w=(-2,-3,-5)\}$ is not linearly independent, $(w=-u)$ and
$\{v=(4,6,10), w=(-2,-3,-5)\}$ is not linearly independent, $(v=-2 w)$.
Then $\operatorname{rank}(\{u, v, w\}<2$.
$\{v=(4,6,10)\}$ (for example) is linearly independent, $(v \neq 0)$, then $\operatorname{rank}(\{u, v, w\}=1$.

