
Tree Structures in Computer Science

SEDDIK Mohamed Taki Eddine

Batna 2 UNIVERSITY
Faculty of Mathematics and Computer Science

Department of Computer Science

December 13, 2023

Trees: A Brief Review
Binary Trees

Heap Data Structure

SORTING ALGORITHMS OUTLINE I
1 Trees: A Brief Review

Introduction to Tree Structures in Computer Science
Trees in Computer science
Trees in Data Structures and Algorithms
Types of Trees and Their Usage

2 Binary Trees
Binary Tree Primitives
Construction and Modification Primitives
Categories of Binary Trees
Specialized Binary Trees
Representing an Arbitrary Tree as a Binary Tree

SEDDIK M.T. Tree Structures in Computer Science 1 / 51

Trees: A Brief Review
Binary Trees

Heap Data Structure

SORTING ALGORITHMS OUTLINE II
Binary Search Trees
Self Balanced BSTs

3 Heap Data Structure
What is Heap
Heap Concept
Heap in C
Heap Usuage
conclusion

SEDDIK M.T. Tree Structures in Computer Science 2 / 51

Trees: A Brief Review
Binary Trees

Heap Data Structure

Introduction to Tree Structures in Computer Science
Trees in Computer science
Trees in Data Structures and Algorithms
Types of Trees and Their Usage

Introduction to Tree Structures in Computer Science

Exploring the fundamental role of tree structures in
computing.
Understanding trees as a cornerstone in data organization
and algorithm design.
Preparing to delve into types, implementations, and
applications of trees.
Emphasizing the ubiquitous presence of trees in various
computer science domains.

SEDDIK M.T. Tree Structures in Computer Science 3 / 51

Trees: A Brief Review
Binary Trees

Heap Data Structure

Introduction to Tree Structures in Computer Science
Trees in Computer science
Trees in Data Structures and Algorithms
Types of Trees and Their Usage

The Family Tree: A Real-Life Analogy for Tree
Structures

The family tree as a natural example of hierarchical
structure.
Each family member represented as a node.
Generational layers illustrating tree levels.
Parent-child relationships mirroring tree connections.

SEDDIK M.T. Tree Structures in Computer Science 4 / 51

Trees: A Brief Review
Binary Trees

Heap Data Structure

Introduction to Tree Structures in Computer Science
Trees in Computer science
Trees in Data Structures and Algorithms
Types of Trees and Their Usage

Concept of Tree Structures in Computer Science I

Hierarchical Data Structures: Composed of nodes and
edges forming a tree-like structure.
Root Node: The topmost node, serving as the origin or
starting point of the tree.
Child Nodes: Nodes directly connected to another node
moving away from the root.
Parent Node: A node that has one or more nodes
connected below it, known as children.
Siblings: Nodes with the same parent are called siblings.

SEDDIK M.T. Tree Structures in Computer Science 5 / 51

Trees: A Brief Review
Binary Trees

Heap Data Structure

Introduction to Tree Structures in Computer Science
Trees in Computer science
Trees in Data Structures and Algorithms
Types of Trees and Their Usage

Concept of Tree Structures in Computer Science II

Ancestors: Nodes which are higher in the hierarchy are
ancestors of a given node.

Descendents:Nodes which are lower in the hierarchy are
descendants of a given node.

SEDDIK M.T. Tree Structures in Computer Science 6 / 51

Trees: A Brief Review
Binary Trees

Heap Data Structure

Introduction to Tree Structures in Computer Science
Trees in Computer science
Trees in Data Structures and Algorithms
Types of Trees and Their Usage

Concept of Tree Structures in Computer Science III

Figure: Tree Family

Internal Nodes Nodes with at least one child are internal
nodes.
External Nodes/Leaves: Nodes without children,
representing the endpoints of the tree.
edges/Branches: The link connecting nodes, symbolizing
the tree’s structure and pathways.
Level: A way of identifying the generation of nodes, with
the root being at level 0.

Figure: Level

Height: The height of a node is the number of nodes
(excluding the node) on the longest path from the node to
a leaf.

Figure: Height

Height of Tree: Height of a tree is the height of its root.
Depth: The distance from the root to a node, measured in
edges.

Figure: Depth

Node Degree: It is the maximum number of children a
node has.

Figure: Node Degree

Tree Degree: Tree degree is the maximum of the node
degrees. So, the tree degree in the above picture is 3.

SEDDIK M.T. Tree Structures in Computer Science 7 / 51

Trees: A Brief Review
Binary Trees

Heap Data Structure

Introduction to Tree Structures in Computer Science
Trees in Computer science
Trees in Data Structures and Algorithms
Types of Trees and Their Usage

Properties of a Tree I

Finite and Nonempty Nodes:
A tree consists of a finite number of nodes, and it cannot be
empty.

Path to Every Node:
Each node in a tree is accessible through a unique path
from the root node, ensuring complete connectivity within
the tree.

No Cycles:
A tree is an acyclic structure, meaning it does not contain
any cycles.

SEDDIK M.T. Tree Structures in Computer Science 8 / 51

Trees: A Brief Review
Binary Trees

Heap Data Structure

Introduction to Tree Structures in Computer Science
Trees in Computer science
Trees in Data Structures and Algorithms
Types of Trees and Their Usage

Properties of a Tree II

The number of edges in a tree is always one less than the
number of nodes.

SEDDIK M.T. Tree Structures in Computer Science 9 / 51

Trees: A Brief Review
Binary Trees

Heap Data Structure

Introduction to Tree Structures in Computer Science
Trees in Computer science
Trees in Data Structures and Algorithms
Types of Trees and Their Usage

Properties of a Tree III

Figure: Tree Vs not a Tree

SEDDIK M.T. Tree Structures in Computer Science 10 / 51

Trees: A Brief Review
Binary Trees

Heap Data Structure

Introduction to Tree Structures in Computer Science
Trees in Computer science
Trees in Data Structures and Algorithms
Types of Trees and Their Usage

Trees in Data Structures and Algorithms

Essential for efficient data storage and retrieval.
Fundamental in designing algorithms for sorting and
searching.
Various tree types for specific computational needs.
Applications in databases, networking, and AI.

SEDDIK M.T. Tree Structures in Computer Science 11 / 51

Trees: A Brief Review
Binary Trees

Heap Data Structure

Introduction to Tree Structures in Computer Science
Trees in Computer science
Trees in Data Structures and Algorithms
Types of Trees and Their Usage

Application in Hierarchical Data Organization

Ideal for representing and managing hierarchical data.
Commonly used in file systems for organizing files and
directories.
Underpins web document structures like DOM trees.
Facilitates decision-making processes in machine learning.

SEDDIK M.T. Tree Structures in Computer Science 12 / 51

Trees: A Brief Review
Binary Trees

Heap Data Structure

Introduction to Tree Structures in Computer Science
Trees in Computer science
Trees in Data Structures and Algorithms
Types of Trees and Their Usage

Types of Trees and Their Usage

Binary Trees: Each node has up to two children.
Balanced Trees (AVL, Red-Black Trees): Automatically
balances itself.
B-Trees and B+ Trees: Optimized for systems that read
and write large blocks of data.
Trie (Prefix Tree): Specialized tree used in searching,
particularly with text.

SEDDIK M.T. Tree Structures in Computer Science 13 / 51

Trees: A Brief Review
Binary Trees

Heap Data Structure

Binary Tree Primitives
Construction and Modification Primitives
Categories of Binary Trees
Specialized Binary Trees
Representing an Arbitrary Tree as a Binary Tree

Self Balanced BSTs

Binary Tree Primitives
Understanding Nodes: The basic unit of a binary tree.
Properties: Value, left child, right child.
Tree Initialization: Creating a root node.

/ / General Tree Node St ruc tu re
typedef struct TreeNode {

i n t data ;
struct TreeNode * f i r s t C h i l d ;
struct TreeNode * n e x t S i b l i n g ;

} TreeNode ;

/ / Funct ion to create a new Tree Node
TreeNode * createTreeNode (i n t data) {

TreeNode *newNode = (TreeNode *) mal loc (sizeof (TreeNode)) ;
newNode−>data = data ;
newNode−> f i r s t C h i l d = NULL ;
newNode−> n e x t S i b l i n g = NULL ;
return newNode ;

}

/ / Example Usage
/ / TreeNode * roo t = createTreeNode (1) ;
/ / root −> f i r s t C h i l d = createTreeNode (2) ;
/ / root −> f i r s t C h i l d −> n e x t S i b l i n g = createTreeNode (3) ;

SEDDIK M.T. Tree Structures in Computer Science 14 / 51

Trees: A Brief Review
Binary Trees

Heap Data Structure

Binary Tree Primitives
Construction and Modification Primitives
Categories of Binary Trees
Specialized Binary Trees
Representing an Arbitrary Tree as a Binary Tree

Self Balanced BSTs

Construction and Modification Primitives

Adding Nodes: Insertion operations in a binary tree.
Deleting Nodes: Removing nodes and restructuring the
tree.
Updating Nodes: Changing values within the tree.

SEDDIK M.T. Tree Structures in Computer Science 15 / 51

Trees: A Brief Review
Binary Trees

Heap Data Structure

Binary Tree Primitives
Construction and Modification Primitives
Categories of Binary Trees
Specialized Binary Trees
Representing an Arbitrary Tree as a Binary Tree

Self Balanced BSTs

Adding Node
typedef struct Node {

i n t data ;
struct Node * l e f t , * r i g h t ;

} Node ;

/ / Funct ion to create a new Node
Node* newNode(i n t data) {

Node* node = (Node *) mal loc (sizeof (Node)) ;
node−>data = data ;
node−> l e f t = node−> r i g h t = NULL ;
return node ;

}

/ / Funct ion to i n s e r t a new node i n the b inary t ree
Node* i n s e r t (Node* node , i n t data) {

i f (node == NULL) return newNode(data) ;

i f (data < node−>data)
node−> l e f t = i n s e r t (node−> l e f t , data) ;

else i f (data > node−>data)
node−> r i g h t = i n s e r t (node−> r i g h t , data) ;

return node ;
} SEDDIK M.T. Tree Structures in Computer Science 16 / 51

Trees: A Brief Review
Binary Trees

Heap Data Structure

Binary Tree Primitives
Construction and Modification Primitives
Categories of Binary Trees
Specialized Binary Trees
Representing an Arbitrary Tree as a Binary Tree

Self Balanced BSTs

Deleting Nodes I

/ / Funct ion to f i n d the minimum value node i n the t ree
Node* minValueNode (Node* node) {

Node* cu r ren t = node ;
while (cu r ren t && cur ren t −> l e f t != NULL)

cu r ren t = cur ren t −> l e f t ;
return cu r ren t ; }

/ / Funct ion to de le te a node from the b inary t ree
Node* deleteNode (Node* root , i n t data) {

i f (r oo t == NULL) return r oo t ;

i f (data < root −>data)
root −> l e f t = deleteNode (root −> l e f t , data) ;

else i f (data > root −>data)
root −> r i g h t = deleteNode (root −> r i g h t , data) ;

else {
i f (root −> l e f t == NULL) {

Node* temp = root −> r i g h t ;
f r ee (roo t) ;
return temp ; }

else i f (root −> r i g h t == NULL) {

SEDDIK M.T. Tree Structures in Computer Science 17 / 51

Trees: A Brief Review
Binary Trees

Heap Data Structure

Binary Tree Primitives
Construction and Modification Primitives
Categories of Binary Trees
Specialized Binary Trees
Representing an Arbitrary Tree as a Binary Tree

Self Balanced BSTs

Deleting Nodes II

Node* temp = root −> l e f t ;
f r ee (roo t) ;
return temp ; }

Node* temp = minValueNode (root −> r i g h t) ;
root −>data = temp−>data ;
root −> r i g h t = deleteNode (root −> r i g h t , temp−>data) ; }

return r oo t ; }

SEDDIK M.T. Tree Structures in Computer Science 18 / 51

Trees: A Brief Review
Binary Trees

Heap Data Structure

Binary Tree Primitives
Construction and Modification Primitives
Categories of Binary Trees
Specialized Binary Trees
Representing an Arbitrary Tree as a Binary Tree

Self Balanced BSTs

Updating Nodes

/ / Funct ion to update a node value i n the b inary t ree
void updateNode (Node* node , i n t oldData , i n t newData) {

Node* cu r ren t = node ;
while (cu r ren t != NULL) {

i f (cur ren t −>data == oldData) {
cur ren t −>data = newData ;
return ;

}
else i f (newData < cur ren t −>data)

cu r ren t = cur ren t −> l e f t ;
else

cu r ren t = cur ren t −> r i g h t ;
}

}

SEDDIK M.T. Tree Structures in Computer Science 19 / 51

Trees: A Brief Review
Binary Trees

Heap Data Structure

Binary Tree Primitives
Construction and Modification Primitives
Categories of Binary Trees
Specialized Binary Trees
Representing an Arbitrary Tree as a Binary Tree

Self Balanced BSTs

Understanding Tree Traversal

Tree traversal is the process of visiting each node in a tree
data structure, exactly once, in a systematic way.
Types of Traversals:

1 Inorder Traversal
2 Preorder Traversal
3 Postorder Traversal
4 Level-order Traversal

Importance: Fundamental for operations like searching,
modification, and displaying the tree.

SEDDIK M.T. Tree Structures in Computer Science 20 / 51

Trees: A Brief Review
Binary Trees

Heap Data Structure

Binary Tree Primitives
Construction and Modification Primitives
Categories of Binary Trees
Specialized Binary Trees
Representing an Arbitrary Tree as a Binary Tree

Self Balanced BSTs

Inorder Traversal

Process: Left subtree → Root node → Right subtree.
Application: Sorting, retrieving sorted data from BSTs.

void i no rde r (TreeNode * roo t) {
i f (r oo t != NULL) {

i no rde r (root −> l e f t) ;
p r i n t f ("%d " , root −>va l) ;
i no rde r (root −> r i g h t) ;

}
}

SEDDIK M.T. Tree Structures in Computer Science 21 / 51

Trees: A Brief Review
Binary Trees

Heap Data Structure

Binary Tree Primitives
Construction and Modification Primitives
Categories of Binary Trees
Specialized Binary Trees
Representing an Arbitrary Tree as a Binary Tree

Self Balanced BSTs

Preorder Traversal

Process: Root node → Left subtree → Right subtree.
Application: Creating a copy of the tree, prefix notation
expressions.

void preorder (TreeNode * roo t) {
i f (r oo t != NULL) {

p r i n t f ("%d " , root −>va l) ;
preorder (root −> l e f t) ;
preorder (root −> r i g h t) ;

}
}

SEDDIK M.T. Tree Structures in Computer Science 22 / 51

Trees: A Brief Review
Binary Trees

Heap Data Structure

Binary Tree Primitives
Construction and Modification Primitives
Categories of Binary Trees
Specialized Binary Trees
Representing an Arbitrary Tree as a Binary Tree

Self Balanced BSTs

Postorder Traversal

Process: Left subtree → Right subtree → Root node.
Application: Deleting the tree, postfix notation expressions.

void postorder (TreeNode * roo t) {
i f (r oo t != NULL) {

pos torder (root −> l e f t) ;
pos torder (root −> r i g h t) ;
p r i n t f ("%d " , root −>va l) ;

}
}

SEDDIK M.T. Tree Structures in Computer Science 23 / 51

Trees: A Brief Review
Binary Trees

Heap Data Structure

Binary Tree Primitives
Construction and Modification Primitives
Categories of Binary Trees
Specialized Binary Trees
Representing an Arbitrary Tree as a Binary Tree

Self Balanced BSTs

Level-order Traversal
Process: Nodes are visited level by level from top to
bottom.
Application: Breadth-first search algorithms.

void l eve lOrder (TreeNode * roo t) {
i f (r oo t == NULL) return ;
Queue q ;
enqueue(&q , roo t) ;

while (! isEmpty (q)) {
TreeNode * node = f r o n t (&q) ;
dequeue(&q) ;
p r i n t f ("%d " , node−>va l) ;

i f (node−> l e f t != NULL)
enqueue(&q , node−> l e f t) ;

i f (node−> r i g h t != NULL)
enqueue(&q , node−> r i g h t) ;

}
}

SEDDIK M.T. Tree Structures in Computer Science 24 / 51

Trees: A Brief Review
Binary Trees

Heap Data Structure

Binary Tree Primitives
Construction and Modification Primitives
Categories of Binary Trees
Specialized Binary Trees
Representing an Arbitrary Tree as a Binary Tree

Self Balanced BSTs

Categories of Binary Trees

Full Binary Tree
Complete Binary Tree
Perfect Binary Tree
Balanced Binary Tree
Degenerate (Pathological)
Tree

SEDDIK M.T. Tree Structures in Computer Science 25 / 51

Trees: A Brief Review
Binary Trees

Heap Data Structure

Binary Tree Primitives
Construction and Modification Primitives
Categories of Binary Trees
Specialized Binary Trees
Representing an Arbitrary Tree as a Binary Tree

Self Balanced BSTs

Full Binary Tree

Definition: A binary tree
where every node has
either 0 or 2 children.
Properties:

No nodes with only one
child.
The number of leaf
nodes is one more than
nodes with two children.

Applications: Used in
scenarios requiring complete
binary structure without any
missing children. SEDDIK M.T. Tree Structures in Computer Science 26 / 51

Trees: A Brief Review
Binary Trees

Heap Data Structure

Binary Tree Primitives
Construction and Modification Primitives
Categories of Binary Trees
Specialized Binary Trees
Representing an Arbitrary Tree as a Binary Tree

Self Balanced BSTs

Complete Binary Tree

Definition: A binary tree
where all levels are
completely filled except
possibly the last level,
which is filled from left to
right.
Properties:

Utilizes array-based
representation
efficiently.

Applications: Ideal for
priority queues and
heap-based data
structures.

SEDDIK M.T. Tree Structures in Computer Science 27 / 51

Trees: A Brief Review
Binary Trees

Heap Data Structure

Binary Tree Primitives
Construction and Modification Primitives
Categories of Binary Trees
Specialized Binary Trees
Representing an Arbitrary Tree as a Binary Tree

Self Balanced BSTs

complete & Full Binary Tree

SEDDIK M.T. Tree Structures in Computer Science 28 / 51

Trees: A Brief Review
Binary Trees

Heap Data Structure

Binary Tree Primitives
Construction and Modification Primitives
Categories of Binary Trees
Specialized Binary Trees
Representing an Arbitrary Tree as a Binary Tree

Self Balanced BSTs

Perfect Binary Tree

Definition: A binary tree in
which all interior nodes
have two children and all
leaves have the same
depth or level.
Properties:

Every level of the tree is
fully populated.

Applications: Used in
scenarios where complete
and symmetrical structure
is required.

SEDDIK M.T. Tree Structures in Computer Science 29 / 51

Trees: A Brief Review
Binary Trees

Heap Data Structure

Binary Tree Primitives
Construction and Modification Primitives
Categories of Binary Trees
Specialized Binary Trees
Representing an Arbitrary Tree as a Binary Tree

Self Balanced BSTs

Balanced Binary Tree

Definition: A binary tree where the
height of the two subtrees of any node
differ by no more than one.
Properties:

Ensures O(log n) complexity for
insertion, deletion, and search
operations.

Examples: AVL trees, Red-Black trees.
Applications: Widely used in real-world
scenarios where frequent insertions
and deletions occur.

SEDDIK M.T. Tree Structures in Computer Science 30 / 51

Trees: A Brief Review
Binary Trees

Heap Data Structure

Binary Tree Primitives
Construction and Modification Primitives
Categories of Binary Trees
Specialized Binary Trees
Representing an Arbitrary Tree as a Binary Tree

Self Balanced BSTs

Specialized Binary Trees

Binary Search Trees (BST): Maintains a specific order for
efficient searching.
AVL Trees: Self-balancing BST for optimized searching
and insertion.
Red-Black Trees: Another form of self-balancing BST,
widely used in practical applications.

SEDDIK M.T. Tree Structures in Computer Science 31 / 51

Trees: A Brief Review
Binary Trees

Heap Data Structure

Binary Tree Primitives
Construction and Modification Primitives
Categories of Binary Trees
Specialized Binary Trees
Representing an Arbitrary Tree as a Binary Tree

Self Balanced BSTs

Concept of Representing an Arbitrary Tree as a Binary
Tree

Transforming any tree structure into a binary tree format.
Facilitates the application of binary tree algorithms to
general trees.
Enhances understanding and manipulation of complex tree
structures.

SEDDIK M.T. Tree Structures in Computer Science 32 / 51

Trees: A Brief Review
Binary Trees

Heap Data Structure

Binary Tree Primitives
Construction and Modification Primitives
Categories of Binary Trees
Specialized Binary Trees
Representing an Arbitrary Tree as a Binary Tree

Self Balanced BSTs

Methods: Left-child, Right-sibling Representation

Left Child: Represents the first child of a node in the
general tree.
Right Sibling: Represents the next sibling of a node in the
general tree.
Preserves the hierarchical and sibling relationships of the
original tree.

SEDDIK M.T. Tree Structures in Computer Science 33 / 51

Trees: A Brief Review
Binary Trees

Heap Data Structure

Binary Tree Primitives
Construction and Modification Primitives
Categories of Binary Trees
Specialized Binary Trees
Representing an Arbitrary Tree as a Binary Tree

Self Balanced BSTs

Advantages of Binary Tree Representation

Simplifies handling of trees with varying numbers of
children.
Makes general trees compatible with binary tree
operations.
Enhances efficiency in algorithms and data structures.

SEDDIK M.T. Tree Structures in Computer Science 34 / 51

Trees: A Brief Review
Binary Trees

Heap Data Structure

Binary Tree Primitives
Construction and Modification Primitives
Categories of Binary Trees
Specialized Binary Trees
Representing an Arbitrary Tree as a Binary Tree

Self Balanced BSTs

What is Binary Search Tree

SEDDIK M.T. Tree Structures in Computer Science 35 / 51

Trees: A Brief Review
Binary Trees

Heap Data Structure

Binary Tree Primitives
Construction and Modification Primitives
Categories of Binary Trees
Specialized Binary Trees
Representing an Arbitrary Tree as a Binary Tree

Self Balanced BSTs

Binary Search Trees

BST Properties: Left child < Parent < Right child.
Operations: Insertion, search, and deletion.
Efficiency: Time complexity analysis.

SEDDIK M.T. Tree Structures in Computer Science 35 / 51

Trees: A Brief Review
Binary Trees

Heap Data Structure

Binary Tree Primitives
Construction and Modification Primitives
Categories of Binary Trees
Specialized Binary Trees
Representing an Arbitrary Tree as a Binary Tree

Self Balanced BSTs

Binary Search Tree in C

SEDDIK M.T. Tree Structures in Computer Science 36 / 51

Trees: A Brief Review
Binary Trees

Heap Data Structure

Binary Tree Primitives
Construction and Modification Primitives
Categories of Binary Trees
Specialized Binary Trees
Representing an Arbitrary Tree as a Binary Tree

Self Balanced BSTs

BST Node Structure

typedef struct BSTNode {
i n t data ;
struct BSTNode * l e f t , * r i g h t ;

} BSTNode ;

/ / Helper f u n c t i o n to create a new BST Node
BSTNode* createBSTNode (i n t data) {

BSTNode *newNode = (BSTNode *) mal loc (sizeof (BSTNode)) ;
newNode−>data = data ;
newNode−> l e f t = newNode−> r i g h t = NULL ;
return newNode ;

}

SEDDIK M.T. Tree Structures in Computer Science 36 / 51

Trees: A Brief Review
Binary Trees

Heap Data Structure

Binary Tree Primitives
Construction and Modification Primitives
Categories of Binary Trees
Specialized Binary Trees
Representing an Arbitrary Tree as a Binary Tree

Self Balanced BSTs

Insertion

/ / Funct ion to i n s e r t a new value i n t o the BST
BSTNode* insertBST (BSTNode *node , i n t value) {

i f (node == NULL) return createBSTNode (value) ;

i f (value < node−>data)
node−> l e f t = insertBST (node−> l e f t , value) ;

else i f (value > node−>data)
node−> r i g h t = insertBST (node−> r i g h t , value) ;

return node ;
}

SEDDIK M.T. Tree Structures in Computer Science 37 / 51

Trees: A Brief Review
Binary Trees

Heap Data Structure

Binary Tree Primitives
Construction and Modification Primitives
Categories of Binary Trees
Specialized Binary Trees
Representing an Arbitrary Tree as a Binary Tree

Self Balanced BSTs

Search

/ / Funct ion to search f o r a value i n the BST
BSTNode* searchBST (BSTNode* node , i n t value) {

i f (node == NULL | | node−>data == value)
return node ;

i f (value < node−>data)
return searchBST (node−> l e f t , value) ;

else
return searchBST (node−> r i g h t , value) ;

}

SEDDIK M.T. Tree Structures in Computer Science 38 / 51

Trees: A Brief Review
Binary Trees

Heap Data Structure

Binary Tree Primitives
Construction and Modification Primitives
Categories of Binary Trees
Specialized Binary Trees
Representing an Arbitrary Tree as a Binary Tree

Self Balanced BSTs

Deletion I

/ / Funct ion to f i n d the minimum value node i n a BST subtree
BSTNode* minValueNode (BSTNode* node) {

BSTNode* cu r ren t = node ;
while (cu r ren t && cur ren t −> l e f t != NULL)

cu r ren t = cur ren t −> l e f t ;
return cu r ren t ;

}

/ / Funct ion to de le te a node from the BST
BSTNode* deleteBSTNode (BSTNode* root , i n t value) {

i f (r oo t == NULL) return r oo t ;

i f (value < root −>data)
root −> l e f t = deleteBSTNode (root −> l e f t , value) ;

else i f (value > root −>data)
root −> r i g h t = deleteBSTNode (root −> r i g h t , value) ;

else {
i f (root −> l e f t == NULL) {

BSTNode* temp = root −> r i g h t ;
f r ee (roo t) ;

SEDDIK M.T. Tree Structures in Computer Science 39 / 51

Trees: A Brief Review
Binary Trees

Heap Data Structure

Binary Tree Primitives
Construction and Modification Primitives
Categories of Binary Trees
Specialized Binary Trees
Representing an Arbitrary Tree as a Binary Tree

Self Balanced BSTs

Deletion II

return temp ;
} else i f (root −> r i g h t == NULL) {

BSTNode* temp = root −> l e f t ;
f r ee (roo t) ;
return temp ;

}

BSTNode* temp = minValueNode (root −> r i g h t) ;
root −>data = temp−>data ;
root −> r i g h t = deleteBSTNode (root −> r i g h t , temp−>data) ;

}
return r oo t ;

}

SEDDIK M.T. Tree Structures in Computer Science 40 / 51

Trees: A Brief Review
Binary Trees

Heap Data Structure

Binary Tree Primitives
Construction and Modification Primitives
Categories of Binary Trees
Specialized Binary Trees
Representing an Arbitrary Tree as a Binary Tree

Self Balanced BSTs

Balanced Binary Search Trees

Importance of Balancing: Ensuring optimal operation time.
Types: AVL Trees and Red-Black Trees.
Balancing Mechanisms: Rotations and color changes.

SEDDIK M.T. Tree Structures in Computer Science 41 / 51

Trees: A Brief Review
Binary Trees

Heap Data Structure

Binary Tree Primitives
Construction and Modification Primitives
Categories of Binary Trees
Specialized Binary Trees
Representing an Arbitrary Tree as a Binary Tree

Self Balanced BSTs

AVL Trees
An AVL tree is a self-balancing Binary Search Tree (BST).
Balancing Factor: The height difference between left and
right subtrees is no more than 1.
Rotations are used to rebalance the tree: single and
double rotations.

typedef struct AVLNode {
i n t data ;
struct AVLNode * l e f t ;
struct AVLNode * r i g h t ;
i n t he igh t ;

} AVLNode ;

/ / Funct ion pro to types f o r AVL t ree opera t ions
AVLNode* inser tAVL (AVLNode* node , i n t data) ;
AVLNode* r o t a t e R i g h t (AVLNode* y) ;
AVLNode* r o t a t e L e f t (AVLNode* x) ;
i n t getBalance (AVLNode* N) ;
/ / . . . Other necessary f u n c t i o n s

SEDDIK M.T. Tree Structures in Computer Science 42 / 51

Trees: A Brief Review
Binary Trees

Heap Data Structure

What is Heap
Heap Concept
Heap in C
Heap Usuage
conclusion

Introduction to Heap Structures

A heap is a specialized tree-based data structure.
Max Heap: Parent ≥ Children; Min Heap: Parent ≤
Children.
Applications: Priority queues, heap sort, graph algorithms.

SEDDIK M.T. Tree Structures in Computer Science 43 / 51

Trees: A Brief Review
Binary Trees

Heap Data Structure

What is Heap
Heap Concept
Heap in C
Heap Usuage
conclusion

Characteristics of Heaps

A complete binary tree structure (or Quasi-perfect binary
tree).
Efficiently represented in an array.
Key in various algorithm implementations.

SEDDIK M.T. Tree Structures in Computer Science 44 / 51

Trees: A Brief Review
Binary Trees

Heap Data Structure

What is Heap
Heap Concept
Heap in C
Heap Usuage
conclusion

Heap Representation in Memory

Array-based representation.
Index relationships: Parent at i , left child at 2i + 1, right
child at 2i + 2.

SEDDIK M.T. Tree Structures in Computer Science 45 / 51

Trees: A Brief Review
Binary Trees

Heap Data Structure

What is Heap
Heap Concept
Heap in C
Heap Usuage
conclusion

Basic Operations in Heaps

Insertion and its upward adjustment.
Deletion (typically the root) and its downward adjustment.
Heapify process to maintain heap properties.

SEDDIK M.T. Tree Structures in Computer Science 46 / 51

Trees: A Brief Review
Binary Trees

Heap Data Structure

What is Heap
Heap Concept
Heap in C
Heap Usuage
conclusion

Insertion in a Heap - C Code Example

void i n s e r t (i n t a r r [] , i n t * n , i n t Key) {
*n = *n + 1;
i n t i = *n − 1;
a r r [i] = Key ;
while (i != 0 && a r r [(i − 1) / 2] < a r r [i]) {

swap(& a r r [i] , &a r r [(i − 1) / 2]) ;
i = (i − 1) / 2 ;

}
}

SEDDIK M.T. Tree Structures in Computer Science 47 / 51

Trees: A Brief Review
Binary Trees

Heap Data Structure

What is Heap
Heap Concept
Heap in C
Heap Usuage
conclusion

Deletion in a Heap - C Code Example

void deleteRoot (i n t a r r [] , i n t * n) {
i n t las tE lement = a r r [* n − 1] ;
a r r [0] = las tE lement ;
*n = *n − 1;
heap i fy (ar r , *n , 0) ;

}

void heap i fy (i n t a r r [] , i n t n , i n t i) {
i n t l a r g e s t = i ;
i n t l e f t = 2 * i + 1 ;
i n t r i g h t = 2 * i + 2 ;
i f (l e f t < n && a r r [l e f t] > a r r [l a r g e s t])

l a r g e s t = l e f t ;
i f (r i g h t < n && a r r [r i g h t] > a r r [l a r g e s t])

l a r g e s t = r i g h t ;
i f (l a r g e s t != i) {

swap(& a r r [i] , &a r r [l a r g e s t]) ;
heap i fy (ar r , n , l a r g e s t) ;

}
}

SEDDIK M.T. Tree Structures in Computer Science 48 / 51

Trees: A Brief Review
Binary Trees

Heap Data Structure

What is Heap
Heap Concept
Heap in C
Heap Usuage
conclusion

Heap Sort - C Code Example

void heapSort (i n t a r r [] , i n t n) {
for (i n t i = n / 2 − 1; i >= 0; i −−)

heap i fy (ar r , n , i) ;
for (i n t i =n−1; i >=0; i −−) {

swap(& a r r [0] , &a r r [i]) ;
heap i fy (ar r , i , 0) ;

}
}

SEDDIK M.T. Tree Structures in Computer Science 49 / 51

Trees: A Brief Review
Binary Trees

Heap Data Structure

What is Heap
Heap Concept
Heap in C
Heap Usuage
conclusion

Advanced Concepts and Applications

Implementing quasi-perfect binary trees in heaps.
Heap’s role in complex algorithms like Dijkstra’s and Prim’s.
Heap peeling in ordered data processing.

SEDDIK M.T. Tree Structures in Computer Science 50 / 51

Trees: A Brief Review
Binary Trees

Heap Data Structure

What is Heap
Heap Concept
Heap in C
Heap Usuage
conclusion

Conclusion and Best Practices

Heaps are essential for efficient algorithm implementation.
Deep understanding of heap operations enhances
problem-solving skills.
Theoretical knowledge combined with practical
implementation is key.

SEDDIK M.T. Tree Structures in Computer Science 51 / 51

	Trees: A Brief Review
	Introduction to Tree Structures in Computer Science
	Trees in Computer science
	Trees in Data Structures and Algorithms
	Types of Trees and Their Usage

	Binary Trees
	Binary Tree Primitives
	Construction and Modification Primitives
	Categories of Binary Trees
	Specialized Binary Trees
	Representing an Arbitrary Tree as a Binary Tree
	Binary Search Trees
	
	
	Self Balanced BSTs

	Heap Data Structure
	What is Heap
	Heap Concept
	Heap in C
	Heap Usuage
	conclusion

