1, 6

~

|

7
4 - o,
Mengyy

”
vor 8K

Graph Theory and Applications

SEDDIK Mohamed Taki Eddine

Batna 2 UNIVERSITY
Faculty of Mathematics and Computer Science
Department of Computer Science

December 15, 2023

SORTING ALGORITHMS OUTLINE |

o Introduction to Graph Theory

9 Representing Graphs

9 Traversing Graphs

0 Questions

SEDDIK M.T. Graph Theory and Applications

Introduction to Graph Theory

Introduction to Graph Theory

@ Definition: Graph theory is a field of mathematics and
computer science that studies the properties of graphs.

@ Importance: Widely used in computer science,
engineering, biology, social science, and many other fields.

@ Applications: Network analysis, circuit design, scheduling,
data organization, etc.

SEDDIK M.T. Graph Theory and Applications

Introduction to Graph Theory

Defining Graphs in Computer Science |

@ Graph Structure: A set of nodes (or vertices) and a set of
edges connecting pairs of nodes.

Introduction to Graphs

Nodes / Vertices

SEDDIK M.T. Graph Theory and Applications

3/39

Introduction to Graph Theory

Defining Graphs in Computer Science Il

@ Types of Graphs:
o Null Graph :A graph is known as a null graph if there are no

edges in the graph.
e Trivial Graph : Graph having only a single vertex, it is also

the smallest graph possible.

&
5 1 2
4
Null Graph Trivial Graph
o6

SEDDIK M.T. Graph Theory and Applications

Introduction to Graph Theory

Defining Graphs in Computer Science llI

o Directed:A graph in which edges do not have any direction.
That is the nodes are unordered pairs in the definition of
every edge.

e Undirected graphs:A graph in which edge has direction.
That is the nodes are ordered pairs in the definition of every
edge.

2N
N N

Undirected Graph Directed Graph
o6

SEDDIK M.T. Graph Theory and Applications

Introduction to Graph Theory

Defining Graphs in Computer Science IV

e Connected:The graph in which from one node we can visit
any other node in the graph is known as a connected graph.

e Disconnected Graph: The graph in which at least one node
is not reachable from a node is known as a disconnected

graph.
/ 2 \ / 2
5 il 5 it
\ ; / ; /
Connected Graph Disconnected Graph
oG

SEDDIK M.T. Graph Theory and Applications

Introduction to Graph Theory

Defining Graphs in Computer Science V

e Regular Graph: The graph in which the degree of every
vertex is equal to K is called K regular graph.

o Complete Graph : The graph in which from each node there
is an edge to each other node.

i W N

5 L 5 il

\ 4 / \ 4 /

2-Regular Complete Graph
oG J

SEDDIK M.T. Graph Theory and Applications

Introduction to Graph Theory

Defining Graphs in Computer Science VI

o Cycle Graph:The graph in which the graph is a cycle in
itself, the degree of each vertex is 2.

e Cyclic Graph: A graph containing at least one cycle is
known as a Cyclic graph.

Pk T i

5

N L

Cycle Graph Cyclic Graph

QGJ

SEDDIK M.T. Graph Theory and Applications

Introduction to Graph Theory

Defining Graphs in Computer Science VII

o Directed Acyclic Graph A Directed Graph that does not

contain any cycle.
o Bipartite Graph: A graph in which vertex can be divided into

two sets such that vertex in each set does not contain any
edge between them.

Directed Acyclic Graph Bipartite Graph
oG

SEDDIK M.T. Graph Theory and Applications

Introduction to Graph Theory

Defining Graphs in Computer Science VIlI

o Weighted Graph:A graph in which the edges are already
specified with suitable weight is known as a weighted graph.

o Trees and Lists.

SEDDIK M.T. Graph Theory and Applications

Representing Graphs

Overview of Graph Representation

@ Importance: Effective representation of graphs is crucial
for efficient graph algorithms.

@ Criteria: Space complexity, ease of implementing
operations, and suitability for specific algorithms.

@ Common Methods: Adjacency matrices, incidence
matrices, and adjacency lists.

SEDDIK M.T. Graph Theory and Applications

Representing Graphs

Adjacency Matrix Representation |

@ Definition: A square matrix used to represent a finite graph.

@ Representation: The element at row i and column j
represents the presence (or absence) of an edge between
vertex i and vertex j.

@ Pros and Cons: Simple representation but may consume
more space, especially for sparse graphs.

SEDDIK M.T. Graph Theory and Applications

Representing Graphs

Adjacency Matrix Representation Il

o o 0

1 2
0 1 1
1 1 1
o § : :

Undirected Graph

|>
=Y

jacency Matrix

Graph Representation of Undirected graph to Adjacency Matrix

Graph Theory and Applications

Representing Graphs

Adjacency Matrix Representation |l

o o 0

-
r

-

o ?

Directed Graph

|>
=Y

jacency Matrix

Graph Representation of Directed graph to Adjacency Matrix

Graph Theory and Applications

Representing Graphs

Incidence Matrix Representation |

@ Definition: A matrix that shows the relationship between
vertices and edges.

@ Representation: Rows represent vertices, columns
represent edges, and matrix entries indicate which vertex
is incident to which edge.

@ Usage: Useful for edge-centric operations and for graphs
with more edges than vertices.

SEDDIK M.T. Graph Theory and Applications

Representing Graphs

Incidence Matrix Representation Il

el Ll [
(@] o SN

OIFRIO(IlW

O N oW
olo
o)

d ¢

Figure: Graph Representation of directed graph to Incedence Matrix

SEDDIK M.T. Graph Theory and Applications

Representing Graphs

Adjacency List Representation |

@ Definition: A collection of lists used to represent a finite
graph.

@ Structure: Each list describes the set of neighbors of a
vertex in the graph.

@ Efficiency: More space-efficient for sparse graphs, and
allows for faster traversal operations.

SEDDIK M.T. Graph Theory and Applications

Representing Graphs

Adjacency List Representation |l

i

Array Linked List
© (2) =
o
o 2 o]

Undirected Graph Adjacency List

Graph Representation of Undirected graph to Adjacency List

Graph Theory and Applications

Representing Graphs

Adjacency List Representation Il

° o Array Linked List
0
1 {0 {2 [{w
©) SHe

Directed Graph Adjacency List

Graph Representation of Directed graph to Adjacency List

SEDDIK M.T. Graph Theory and Applications

Traversing Graphs

Overview of Graph Traversal

@ Definition: Graph traversal refers to the process of visiting
all the vertices in a graph.

@ Purpose: Used for searching a graph, path finding, and
analyzing structure.

@ Common Methods: Breadth-First Search, Depth-First
Search, Dijkstra’s Algorithm, etc.

SEDDIK M.T. Graph Theory and Applications

Traversing Graphs

Breadth-First Search

@ Concept: BFS explores the graph level by level starting
from a selected node.

@ Process: It uses a queue to keep track of the next vertex to
visit.

@ Application: Used in shortest path finding in unweighted
graphs, networking, and more.

SEDDIK M.T. Graph Theory and Applications

Traversing Graphs

Example of Breadth-First Search |

@ Step1: Initially queue and visited arrays are empty.

- \

visted | | | | | |

Queve | | [| [|
r

FRONT

\ BFS on Graph /

SEDDIK M.T. Graph Theory and Applications

Traversing Graphs

Example of Breadth-First Search Il

@ Step2: Push node 0 into queue and mark it visited.

- ™

visited |0 | [[| |
Queue | g | | | | |
FRE;NT

\ BFS on Graph /

SEDDIK M.T. Graph Theory and Applications

Traversing Graphs

Example of Breadth-First Search lll

@ Step 3: Remove node 0 from the front of queue and visit
the unvisited neighbours and push them into queue.

4 N

visited |0 [1 [2] | |

Queve [2]2] | [|
¥

FRONT

\ BES on Graph /

SEDDIK M.T. Graph Theory and Applications

Traversing Graphs

Example of Breadth-First Search IV

@ Step 4: Remove node 1 from the front of queue and visit
the unvisited neighbours and push them into queue.

4 N

visited | 0 [1 [2] 3] |

Queve [2]3] | [|
¥

FRONT

\ BES on Graph /

SEDDIK M.T. Graph Theory and Applications

Traversing Graphs

Example of Breadth-First Search V

@ Step 5: Remove node 2 from the front of queue and visit
the unvisited neighbours and push them into queue.

4 N

Visited | 0 [1 [2 [3] 4]

Queve [3]a] | [|
¥

FRONT

\ BFS on Graph /

SEDDIK M.T. Graph Theory and Applications

Traversing Graphs

Example of Breadth-First Search VI

@ Step 6: Remove node 3 from the front of queue and visit
the unvisited neighbours and push them into queue. As we
can see that every neighbours of node 3 is visited, so
move to the next node that are in the front of the queue.

/

~

Visited | 0 [1 [2[3][4

Queve [4] [| |
7

FRONT

\ BFS on Graph

,//

SEDDIK M.T. Graph Theory and Applications

Traversing Graphs

Example of Breadth-First Search VII

@ Steps 7: Remove node 4 from the front of queue and visit
the unvisited neighbours and push them into queue. As we
can see that every neighbours of node 4 are visited, so
move to the next node that is in the front of the queue.

/

~

Visited | 0 [1 [2[3][4

Queve | | [| |
7

FRONT

\ BFS on Graph

/

SEDDIK M.T. Graph Theory and Applications

Traversing Graphs

Example of Breadth-First Search VIII

@ Now, Queue becomes empty, So, terminate these process
of iteration.

SEDDIK M.T. Graph Theory and Applications

Traversing Graphs

Depth-First Search

@ Concept: DFS explores as far as possible along each
branch before backtracking.

@ Process: It uses a stack (either explicit or via recursion) for
traversal.

@ Application: Used for path finding, topological sorting, and
solving puzzles with only one solution.

SEDDIK M.T. Graph Theory and Applications

Traversing Graphs

Example of Depth-First Search |

@ Step1: Initially stack and visited arrays are empty.

Stack

DFS on Graph

SEDDIK M.T. Graph Theory and Applications

Traversing Graphs

Example of Depth-First Search Il

@ Step 2: Visit 0 and put its adjacent nodes which are not
visited yet into the stack.

[of [[| | visited

Stack

DFS on Graph

SEDDIK M.T. Graph Theory and Applications

Traversing Graphs

Example of Depth-First Search Il

@ Step 3: Now, Node 1 at the top of the stack, so visit node 1
and pop it from the stack and put all of its adjacent nodes
which are not visited in the stack.

[of 1] [[[visite

DFS on Graph

SEDDIK M.T. Graph Theory and Applications

Traversing Graphs

Example of Depth-First Search IV

@ Step 4: Now, Node 2 at the top of the stack, so visit node 2
and pop it from the stack and put all of its adjacent nodes
which are not visited (i.e, 3, 4) in the stack.

[of1]2] | | visited

[4]3] | | | stack

DFS on Graph

SEDDIK M.T. Graph Theory and Applications

Traversing Graphs

Example of Depth-First Search V

@ Step 5: Now, Node 4 at the top of the stack, so visit node 4
and pop it from the stack and put all of its adjacent nodes
which are not visited in the stack.

Stack

DFS on Graph

SEDDIK M.T. Graph Theory and Applications

Traversing Graphs

Example of Depth-First Search VI

@ Step 6: Now, Node 3 at the top of the stack, so visit node 3
and pop it from the stack and put all of its adjacent nodes
which are not visited in the stack.

[of1]2[4]3] visitea

DFS on Graph

SEDDIK M.T. Graph Theory and Applications

Traversing Graphs

Example of Depth-First Search VII

@ Now, Stack becomes empty, which means we have visited
all the nodes and our DFS traversal ends.

SEDDIK M.T. Graph Theory and Applications

Traversing Graphs

Implementing Dijkstra’s Algorithm

@ Purpose: Finds the shortest path from a single source
node to all other nodes in a weighted graph.

@ Mechanism: Uses a priority queue to select the vertex with
the minimum distance.

@ Application: Widely used in network routing protocols,
mapping services, and as a subroutine in other graph
algorithms.

SEDDIK M.T. Graph Theory and Applications

Questions

Consider the start vertex, A
Distance to A from A=0
Distances to all other vertices from A are unknown, therefore o (infinity)

6
° 0 Sima Previous
Vertex | distance
5 fromA | Vertex

A
I T
S
8 D
(o] O ;
1
Visited =[] Unvisited = [A, B, C, D, E]

Figure: Dijkstra

ph Theory and Applications

Questions

Questions & Answers

Thank you for your attention!
Feel free to ask any questions or share your thoughts.

SEDDIK M.T. Graph Theory and Applications

	Introduction to Graph Theory
	Representing Graphs
	Traversing Graphs
	Questions

