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Overview of Algorithm Characteristics

“Algorithms are the heartbeats of
computer science;they define the

pulse of problem-solving.”

Let’s embark on this journey to understand, analyze, and
master algorithms!
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Definition of Algorithms

An algorithm is:
A step-by-step procedure for solving a problem.
Employed in various domains: sorting, searching,
ML, AI.
Designed to reach a specific outcome.
Often optimized for efficient problem-solving.
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Importance of Algorithms

Why Algorithms are Crucial:
Enable efficient problem-solving.
Offer a clear procedural solution.
Form the basis for programmatic implementations.
Underpin various technologies.
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Essential Algorithm Characteristics

Correctness: Accurate outcomes for all possible
inputs.
Efficiency: Optimal use of time and space
resources.
Simplicity: Ease of understanding and
implementation.
Unambiguousness: Clear and unequivocal at each
step.
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Additional Algorithm Characteristics

Finiteness: Concludes after a limited, defined
number of steps.
Definiteness: Every step is explicitly stated and
unambiguous.
Effectiveness: Every operation must be basic,
precise, and performable in a practical manner.
Language Independence: Implementable in
various programming languages.
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Components of Algorithms

Input: Values (or no values) from a specified set.
Output: Values from a specified set, often different
from the input.
Processing Steps: Precise instructions that
transform input to output.
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Algorithm Structure Example

Typical Algorithm Structure:
1 Start
2 Retrieve input data
3 Execute processing steps
4 Deliver output
5 End
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Implementing Algorithms: An Example

A sorting algorithm might involve:
1 Comparing pairs of numbers in a list.
2 Swapping them to be in ascending order.
3 Repeating until the entire list is sorted.

Note: Control structures, such as loops and conditionals,
guide algorithm steps.
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Recursion

Recursion: A Journey Within

"Recursion is the process of defining something in terms of
itself."
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Recursion in Real Life

Like Russian nesting dolls: each doll contains a
smaller doll inside.
Each smaller problem is a version of the larger
problem.
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Basic Concept of Recursion

Recursive Case:
The part of the
function that calls
itself.
Base Case: The
condition under
which the recursion
stops.
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Example: Calculating Factorial

Factorial of a number (n!)

Base Case: 0! = 1
Recursive Case: n! = n × (n − 1)!

i n t f a c t o r i a l ( i n t n ) {
i f ( n == 0) {

return 1; / / Base case
} else {

return n * f a c t o r i a l ( n − 1) ; / / Recursive case
}

}
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Visualizing Recursion

Each function call
creates a branch.
Base case is the
leaf of the tree.
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Advantages and Disadvantages of Recursion

Advantages:

Simplifies code for
complex problems.
Natural fit for
problems involving
subproblems.

Disadvantages:

Can be less
efficient (memory).
Risk of stack
overflow with deep
recursion.
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Recap: Understanding Recursion

Recursion is a function
calling itself.
Consists of a base case
and a recursive case.
Useful for problems that
can be broken down into
smaller subproblems.
Requires careful
consideration to avoid
performance issues.

“Recursion: See
Recursion.”

char Understand_Recursion ( char b ) {
i f ( b== ’ y ’ ) {

return ’ y ’ ;
} else {

for ( i n t s l i d e =12; s l i de
<=18; s l i d e ++)

read ( page ) ;
p r i n t f ( " do you understand

recus ion?y or n " ) ;
scanf ( "%c " ,&b ) ;
return Understand_Recursion

( b ) ;
}

}
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DEFINITIONS

Algorithm Complexity

The complexity of an algorithm is the measure of the number of
fundamental operations it performs on a dataset. It is
expressed as a function of the size of the dataset.

Optimal Algorithm

An algorithm is said to be optimal if its complexity is the
minimum among the algorithms of its class.
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TYPE OF COMPLEXITY

Best-Case
Complexity

Smallest
number of
operations for a
dataset of size
n.
Tmin(n) =
mind∈Dn T (d)

Average-Case
Complexity

Average
complexities
for datasets of
size n.
Tavg(n) =
Σd∈Dn T (d)

|Dn|

Worst-Case
Complexity

Largest number
of operations
for a dataset of
size n.
Tmax(n) =
maxd∈Dn T (d)

Notations:
Dn : Set of data of size n.
T (n) : Operations on a dataset of size n.
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LANDAU’S NOTATION

Introduction
Landau’s notation, often referred to as "Big O", is
commonly used to formally describe the performance of an
algorithm.

Expression
This notation represents the upper bound of a function up
to a constant factor.
f = O(g)⇔ ∃n0,∃c ≥ 0, ∀n ≥ n0, f (n) ≤ c × g(n)

Example

T (n) = O(n2) means there exists a constant c > 0 and a
constant n0 > 0 such that for all n > n0, T (n) ≤ c × n2.
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LANDAU’S NOTATION

Rules of the Big O Notation
Constant terms: O(c) = O(1)
Multiplicative constants are omitted:
O(cT ) = cO(T ) = O(T )

Addition is carried out by taking the maximum:
O(T 1) + O(T2) = O(T 1 + T2) = max(O(T 1);O(T2))
Multiplication remains unchanged:
O(T 1)O(T 2) = O(T 1T 2)
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LANDAU’S NOTATION

Assumption
Assuming the execution time of an algorithm is described by
the function T (n) = 3n2 + 10n + 10, calculate O(T (n))?

O(T (n)) = O(3n2 + 10n + 10)

= O(max(3n2,10n,10))

= O(3n2)

= O(n2)
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LANDAU’S NOTATION

Remark
For n = 10 we have:

Execution time for 3n2: 3(10)2

3(10)2+10(10)+10 = 73.2%

Execution time for 10n: 10(10)
3(10)2+10(10)+10 = 24.4%

Execution time for 10: 10
3(10)2+10(10)+10 = 2.4%

The weight of 3n2 becomes even greater when n = 100, i.e.,
96.7%.
Quantities 10n and 10 can be neglected.
This explains the rules of the Big O notation.
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COMPLEXITY CLASSES

Class
Constant
Linear
Logarithmic
Quasi-linear
Quadratic
Polynomial
Exponential

Notation and Example
O(1) - Access the first element
O(n) - Traverse a data set
O(log(n)) - Splitting data set
O(n log(n)) - Repeated splitting
O(n2) - Two nested loops
O(nP) - P nested loops
O(an) - All possible subsets
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Calcul de la Complexité

Case of a simple instruction (writing, reading, assignment):
The execution time of each simple instruction is O(1).

Case of a sequence of simple instructions:
The execution time of a sequence of instructions is determined
by the sum rule. Therefore, it’s the time of the sequence which
has the highest execution time:
O(T ) = O(T 1 + T2) = max(O(T 1);O(T2)).
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Complexity Calculation

Example :
Permutation(S: array, i : index, j : index)

T 1: tmp← S[i] O(1)
T 2: S[i]← S[j] O(1)
T 3: S[j]← tmp O(1)
T 4: return S O(1)

Complexity

O(T ) = max(O(T 1 + T2 + T 3 + T 4)) = O(1)
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Complexity Calculation

Case of a conditional treatment:
The execution time of a SI (IF) instruction is the execution time
of the executed instructions under condition, plus the time to
evaluate the condition. For an alternative, we consider the
worst case.

If (condition) Then
Treatment1

Else
Treatment2

End If
/* O(T_condition) + max(O(T_treatment1),
O(T_treatment2)) */
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Complexity Calculation

Case of an Iterative Treatment
The execution time of a loop is the sum of the time to evaluate
the body and the time to evaluate the condition. Often, this time
is the product of the number of loop iterations by the longest
possible execution time of the body.
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For Loop
For (i from indStart to indEnd) do
Treatment
End For

indEnd∑
i=indStart

O(Treatment)

While Loop
While (condition) do Treatment Done

number of iterations× (O(condition) + O(Treatment))
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Complexity Calculation
Example 2: Sequential Search (x: value, S: array, n: size)

i <- 0
Found <- false /*O(1)*/
While (i < n) and /*Condition = O(1)*/
(not Found) do /*number of iterations = n*/

i <- i + 1 /*O(1)*/
If (S[i] = x) then /*O(1)*/

Found <- true /*O(1)*/
End If

End While
Return Found /*O(1)*/

O(T ) = max(O(1) + O(n × 1) + O(1)) = O(n)
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Complexity Calculation

Example 3: Bubble Sort (T: Array, n: size)
For i from 1 to n do

/ n times /
For j from i+1 to n do

/ n - i times /
If (T[i] > T[j]) Then

tmp <- T[i];
T[i] <- T[j];
T[j] <- tmp;

End If
End For

End For
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Bubble Sort Complexity Analysis
Mathematical Explanation:
Suppose we have N elements in our list.

In the first pass, we need (N − 1) comparisons.
In the second pass, we need (N − 2) comparisons.
. . .
In the penultimate pass, we need 1 comparison.

Total number of comparisons (C):

C = (N − 1) + (N − 2) + (N − 3) + . . .+ 2 + 1

Using the formula for the sum of an arithmetic series:

C =
N × (N − 1)

2
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