
Algorithms & Complexity

SEDDIK Mohamed Taki Eddine

Batna 2 UNIVERSITY
Faculty of Mathematics and Computer Science

Department of Computer Science

November 8, 2023

Recapitulation of Algorithm Basics
Complexity

Contents of chapter 1:Algorithmic Complexity and
Review I

1 Recapitulation of Algorithm Basics
Overview of Algorithm Characteristics

Definition and Importance of Algorithms
Key Characteristics: Correctness, Efficiency, etc.
General Structure and Components of Algorithms

2 Complexity
Definitions
Type of Complexity
Landau’s Notation
Complexity Classes
Complexity Calculation

SEDDIK M.T. Algorithms & Complexity 1 / 33

Recapitulation of Algorithm Basics
Complexity

Overview of Algorithm Characteristics

Content

1 Recapitulation of Algorithm Basics
Overview of Algorithm Characteristics

2 Complexity

SEDDIK M.T. Algorithms & Complexity 2 / 33

Recapitulation of Algorithm Basics
Complexity

Overview of Algorithm Characteristics

Overview of Algorithm Characteristics

“Algorithms are the heartbeats of
computer science;they define the

pulse of problem-solving.”

Let’s embark on this journey to understand, analyze, and
master algorithms!

SEDDIK M.T. Algorithms & Complexity 3 / 33

Recapitulation of Algorithm Basics
Complexity

Overview of Algorithm Characteristics

Definition of Algorithms

An algorithm is:
A step-by-step procedure for solving a problem.
Employed in various domains: sorting, searching,
ML, AI.
Designed to reach a specific outcome.
Often optimized for efficient problem-solving.

SEDDIK M.T. Algorithms & Complexity 4 / 33

Recapitulation of Algorithm Basics
Complexity

Overview of Algorithm Characteristics

Importance of Algorithms

Why Algorithms are Crucial:
Enable efficient problem-solving.
Offer a clear procedural solution.
Form the basis for programmatic implementations.
Underpin various technologies.

SEDDIK M.T. Algorithms & Complexity 5 / 33

Recapitulation of Algorithm Basics
Complexity

Overview of Algorithm Characteristics

Essential Algorithm Characteristics

Correctness: Accurate outcomes for all possible
inputs.
Efficiency: Optimal use of time and space
resources.
Simplicity: Ease of understanding and
implementation.
Unambiguousness: Clear and unequivocal at each
step.

SEDDIK M.T. Algorithms & Complexity 6 / 33

Recapitulation of Algorithm Basics
Complexity

Overview of Algorithm Characteristics

Additional Algorithm Characteristics

Finiteness: Concludes after a limited, defined
number of steps.
Definiteness: Every step is explicitly stated and
unambiguous.
Effectiveness: Every operation must be basic,
precise, and performable in a practical manner.
Language Independence: Implementable in
various programming languages.

SEDDIK M.T. Algorithms & Complexity 7 / 33

Recapitulation of Algorithm Basics
Complexity

Overview of Algorithm Characteristics

Components of Algorithms

Input: Values (or no values) from a specified set.
Output: Values from a specified set, often different
from the input.
Processing Steps: Precise instructions that
transform input to output.

SEDDIK M.T. Algorithms & Complexity 8 / 33

Recapitulation of Algorithm Basics
Complexity

Overview of Algorithm Characteristics

Algorithm Structure Example

Typical Algorithm Structure:
1 Start
2 Retrieve input data
3 Execute processing steps
4 Deliver output
5 End

SEDDIK M.T. Algorithms & Complexity 9 / 33

Recapitulation of Algorithm Basics
Complexity

Overview of Algorithm Characteristics

Implementing Algorithms: An Example

A sorting algorithm might involve:
1 Comparing pairs of numbers in a list.
2 Swapping them to be in ascending order.
3 Repeating until the entire list is sorted.

Note: Control structures, such as loops and conditionals,
guide algorithm steps.

SEDDIK M.T. Algorithms & Complexity 10 / 33

Recapitulation of Algorithm Basics
Complexity

Overview of Algorithm Characteristics

Recursion

Recursion: A Journey Within

"Recursion is the process of defining something in terms of
itself."

SEDDIK M.T. Algorithms & Complexity 11 / 33

Recapitulation of Algorithm Basics
Complexity

Overview of Algorithm Characteristics

Recursion in Real Life

Like Russian nesting dolls: each doll contains a
smaller doll inside.
Each smaller problem is a version of the larger
problem.

SEDDIK M.T. Algorithms & Complexity 12 / 33

Recapitulation of Algorithm Basics
Complexity

Overview of Algorithm Characteristics

Basic Concept of Recursion

Recursive Case:
The part of the
function that calls
itself.
Base Case: The
condition under
which the recursion
stops.

SEDDIK M.T. Algorithms & Complexity 13 / 33

Recapitulation of Algorithm Basics
Complexity

Overview of Algorithm Characteristics

Example: Calculating Factorial

Factorial of a number (n!)

Base Case: 0! = 1
Recursive Case: n! = n × (n − 1)!

i n t f a c t o r i a l (i n t n) {
i f (n == 0) {

return 1; / / Base case
} else {

return n * f a c t o r i a l (n − 1) ; / / Recursive case
}

}

SEDDIK M.T. Algorithms & Complexity 14 / 33

Recapitulation of Algorithm Basics
Complexity

Overview of Algorithm Characteristics

Visualizing Recursion

Each function call
creates a branch.
Base case is the
leaf of the tree.

SEDDIK M.T. Algorithms & Complexity 15 / 33

Recapitulation of Algorithm Basics
Complexity

Overview of Algorithm Characteristics

Advantages and Disadvantages of Recursion

Advantages:

Simplifies code for
complex problems.
Natural fit for
problems involving
subproblems.

Disadvantages:

Can be less
efficient (memory).
Risk of stack
overflow with deep
recursion.

SEDDIK M.T. Algorithms & Complexity 16 / 33

Recapitulation of Algorithm Basics
Complexity

Overview of Algorithm Characteristics

Recap: Understanding Recursion

Recursion is a function
calling itself.
Consists of a base case
and a recursive case.
Useful for problems that
can be broken down into
smaller subproblems.
Requires careful
consideration to avoid
performance issues.

“Recursion: See
Recursion.”

char Understand_Recursion (char b) {
i f (b== ’ y ’) {

return ’ y ’ ;
} else {

for (i n t s l i d e =12; s l i de
<=18; s l i d e ++)

read (page) ;
p r i n t f (" do you understand

recus ion?y or n ") ;
scanf ("%c " ,&b) ;
return Understand_Recursion

(b) ;
}

}

SEDDIK M.T. Algorithms & Complexity 17 / 33

Recapitulation of Algorithm Basics
Complexity

Definitions
Type of Complexity
Landau’s Notation
Complexity Classes
Complexity Calculation

Content

1 Recapitulation of Algorithm Basics

2 Complexity
Definitions
Type of Complexity
Landau’s Notation
Complexity Classes
Complexity Calculation

SEDDIK M.T. Algorithms & Complexity 18 / 33

Recapitulation of Algorithm Basics
Complexity

Definitions
Type of Complexity
Landau’s Notation
Complexity Classes
Complexity Calculation

DEFINITIONS

Algorithm Complexity

The complexity of an algorithm is the measure of the number of
fundamental operations it performs on a dataset. It is
expressed as a function of the size of the dataset.

Optimal Algorithm

An algorithm is said to be optimal if its complexity is the
minimum among the algorithms of its class.

SEDDIK M.T. Algorithms & Complexity 19 / 33

Recapitulation of Algorithm Basics
Complexity

Definitions
Type of Complexity
Landau’s Notation
Complexity Classes
Complexity Calculation

TYPE OF COMPLEXITY

Best-Case
Complexity

Smallest
number of
operations for a
dataset of size
n.
Tmin(n) =
mind∈Dn T (d)

Average-Case
Complexity

Average
complexities
for datasets of
size n.
Tavg(n) =
Σd∈Dn T (d)

|Dn|

Worst-Case
Complexity

Largest number
of operations
for a dataset of
size n.
Tmax(n) =
maxd∈Dn T (d)

Notations:
Dn : Set of data of size n.
T (n) : Operations on a dataset of size n.

SEDDIK M.T. Algorithms & Complexity 20 / 33

Recapitulation of Algorithm Basics
Complexity

Definitions
Type of Complexity
Landau’s Notation
Complexity Classes
Complexity Calculation

LANDAU’S NOTATION

Introduction
Landau’s notation, often referred to as "Big O", is
commonly used to formally describe the performance of an
algorithm.

Expression
This notation represents the upper bound of a function up
to a constant factor.
f = O(g)⇔ ∃n0,∃c ≥ 0, ∀n ≥ n0, f (n) ≤ c × g(n)

Example

T (n) = O(n2) means there exists a constant c > 0 and a
constant n0 > 0 such that for all n > n0, T (n) ≤ c × n2.

SEDDIK M.T. Algorithms & Complexity 21 / 33

Recapitulation of Algorithm Basics
Complexity

Definitions
Type of Complexity
Landau’s Notation
Complexity Classes
Complexity Calculation

LANDAU’S NOTATION

Rules of the Big O Notation
Constant terms: O(c) = O(1)
Multiplicative constants are omitted:
O(cT) = cO(T) = O(T)

Addition is carried out by taking the maximum:
O(T 1) + O(T2) = O(T 1 + T2) = max(O(T 1);O(T2))
Multiplication remains unchanged:
O(T 1)O(T 2) = O(T 1T 2)

SEDDIK M.T. Algorithms & Complexity 22 / 33

Recapitulation of Algorithm Basics
Complexity

Definitions
Type of Complexity
Landau’s Notation
Complexity Classes
Complexity Calculation

LANDAU’S NOTATION

Assumption
Assuming the execution time of an algorithm is described by
the function T (n) = 3n2 + 10n + 10, calculate O(T (n))?

O(T (n)) = O(3n2 + 10n + 10)

= O(max(3n2,10n,10))

= O(3n2)

= O(n2)

SEDDIK M.T. Algorithms & Complexity 23 / 33

Recapitulation of Algorithm Basics
Complexity

Definitions
Type of Complexity
Landau’s Notation
Complexity Classes
Complexity Calculation

LANDAU’S NOTATION

Remark
For n = 10 we have:

Execution time for 3n2: 3(10)2

3(10)2+10(10)+10 = 73.2%

Execution time for 10n: 10(10)
3(10)2+10(10)+10 = 24.4%

Execution time for 10: 10
3(10)2+10(10)+10 = 2.4%

The weight of 3n2 becomes even greater when n = 100, i.e.,
96.7%.
Quantities 10n and 10 can be neglected.
This explains the rules of the Big O notation.

SEDDIK M.T. Algorithms & Complexity 24 / 33

Recapitulation of Algorithm Basics
Complexity

Definitions
Type of Complexity
Landau’s Notation
Complexity Classes
Complexity Calculation

COMPLEXITY CLASSES

Class
Constant
Linear
Logarithmic
Quasi-linear
Quadratic
Polynomial
Exponential

Notation and Example
O(1) - Access the first element
O(n) - Traverse a data set
O(log(n)) - Splitting data set
O(n log(n)) - Repeated splitting
O(n2) - Two nested loops
O(nP) - P nested loops
O(an) - All possible subsets

SEDDIK M.T. Algorithms & Complexity 25 / 33

Recapitulation of Algorithm Basics
Complexity

Definitions
Type of Complexity
Landau’s Notation
Complexity Classes
Complexity Calculation

Calcul de la Complexité

Case of a simple instruction (writing, reading, assignment):
The execution time of each simple instruction is O(1).

Case of a sequence of simple instructions:
The execution time of a sequence of instructions is determined
by the sum rule. Therefore, it’s the time of the sequence which
has the highest execution time:
O(T) = O(T 1 + T2) = max(O(T 1);O(T2)).

SEDDIK M.T. Algorithms & Complexity 26 / 33

Recapitulation of Algorithm Basics
Complexity

Definitions
Type of Complexity
Landau’s Notation
Complexity Classes
Complexity Calculation

Complexity Calculation

Example :
Permutation(S: array, i : index, j : index)

T 1: tmp← S[i] O(1)
T 2: S[i]← S[j] O(1)
T 3: S[j]← tmp O(1)
T 4: return S O(1)

Complexity

O(T) = max(O(T 1 + T2 + T 3 + T 4)) = O(1)

SEDDIK M.T. Algorithms & Complexity 27 / 33

Recapitulation of Algorithm Basics
Complexity

Definitions
Type of Complexity
Landau’s Notation
Complexity Classes
Complexity Calculation

Complexity Calculation

Case of a conditional treatment:
The execution time of a SI (IF) instruction is the execution time
of the executed instructions under condition, plus the time to
evaluate the condition. For an alternative, we consider the
worst case.

If (condition) Then
Treatment1

Else
Treatment2

End If
/* O(T_condition) + max(O(T_treatment1),
O(T_treatment2)) */

SEDDIK M.T. Algorithms & Complexity 28 / 33

Recapitulation of Algorithm Basics
Complexity

Definitions
Type of Complexity
Landau’s Notation
Complexity Classes
Complexity Calculation

Complexity Calculation

Case of an Iterative Treatment
The execution time of a loop is the sum of the time to evaluate
the body and the time to evaluate the condition. Often, this time
is the product of the number of loop iterations by the longest
possible execution time of the body.

SEDDIK M.T. Algorithms & Complexity 29 / 33

Recapitulation of Algorithm Basics
Complexity

Definitions
Type of Complexity
Landau’s Notation
Complexity Classes
Complexity Calculation

For Loop
For (i from indStart to indEnd) do
Treatment
End For

indEnd∑
i=indStart

O(Treatment)

While Loop
While (condition) do Treatment Done

number of iterations× (O(condition) + O(Treatment))

SEDDIK M.T. Algorithms & Complexity 30 / 33

Recapitulation of Algorithm Basics
Complexity

Definitions
Type of Complexity
Landau’s Notation
Complexity Classes
Complexity Calculation

Complexity Calculation
Example 2: Sequential Search (x: value, S: array, n: size)

i <- 0
Found <- false /*O(1)*/
While (i < n) and /*Condition = O(1)*/
(not Found) do /*number of iterations = n*/

i <- i + 1 /*O(1)*/
If (S[i] = x) then /*O(1)*/

Found <- true /*O(1)*/
End If

End While
Return Found /*O(1)*/

O(T) = max(O(1) + O(n × 1) + O(1)) = O(n)

SEDDIK M.T. Algorithms & Complexity 31 / 33

Recapitulation of Algorithm Basics
Complexity

Definitions
Type of Complexity
Landau’s Notation
Complexity Classes
Complexity Calculation

Complexity Calculation

Example 3: Bubble Sort (T: Array, n: size)
For i from 1 to n do

/ n times /
For j from i+1 to n do

/ n - i times /
If (T[i] > T[j]) Then

tmp <- T[i];
T[i] <- T[j];
T[j] <- tmp;

End If
End For

End For

SEDDIK M.T. Algorithms & Complexity 32 / 33

Recapitulation of Algorithm Basics
Complexity

Definitions
Type of Complexity
Landau’s Notation
Complexity Classes
Complexity Calculation

Bubble Sort Complexity Analysis
Mathematical Explanation:
Suppose we have N elements in our list.

In the first pass, we need (N − 1) comparisons.
In the second pass, we need (N − 2) comparisons.
. . .
In the penultimate pass, we need 1 comparison.

Total number of comparisons (C):

C = (N − 1) + (N − 2) + (N − 3) + . . .+ 2 + 1

Using the formula for the sum of an arithmetic series:

C =
N × (N − 1)

2

SEDDIK M.T. Algorithms & Complexity 33 / 33

	Recapitulation of Algorithm Basics
	Overview of Algorithm Characteristics

	Complexity
	Definitions
	Type of Complexity
	Landau's Notation
	Complexity Classes
	Complexity Calculation

