Course : Algebra 3

Year : 2023/2024
Department of Computer Science

Chapter 4:

Vector spaces

1 Maps on vector spaces

Definition 1.1 Let V be a vector space over a field K and let $f: V \times V \longrightarrow K$ be a function. Supppose that the following two conditions hold, for $\alpha, \beta \in K$.
a. $f\left(\alpha x+\beta x^{\prime}, y\right)=\alpha f(x, y)+\beta f\left(x^{\prime}, y\right), x, x^{\prime}, y \in V$.
b. $f\left(x, \alpha y+\beta y^{\prime}\right)=\alpha f(x, y)+\beta f\left(x, y^{\prime}\right), x, y, y^{\prime} \in V$.

Then, f is called a bilinear map on V.
Example 1.1 Consider the function $f: V \times V \longrightarrow K$ where

$$
\begin{equation*}
f(x, y)=x A y^{T} \tag{1}
\end{equation*}
$$

with $V=\mathbb{R}^{n}$ and $K=\mathbb{R}$ and where A is an $n \times n$ matrix. Then, f represents a bilinear map.
Definition 1.2 Let V be a vector space over a field K and let f be a bilinear map on V. Take that $g: V \longrightarrow K$ is a map, having

$$
\begin{equation*}
g(x)=f(x, x) \tag{2}
\end{equation*}
$$

Then, g is called a quadratic map on V.
Example 1.2 Consider

$$
\begin{equation*}
f(x, y)=a_{11} x_{1} y_{1}+a_{12} x_{1} y_{2}+a_{21} x_{2} y_{1}+a_{22} x_{2} y_{2} \tag{3}
\end{equation*}
$$

Then, we have

$$
\begin{equation*}
g(x)=a_{11} x_{1}^{2}+\left(a_{12}+a_{21}\right) x_{1} x_{2}+a_{22} x_{2}^{2} \tag{4}
\end{equation*}
$$

this map represents a quadratic map.

Definition 1.3 Suppose that the quadratic map $g: V \longrightarrow K$ satisfies, for $x \neq 0$,

$$
\begin{equation*}
g(x)=f(x, x) \succ 0 \tag{5}
\end{equation*}
$$

where f is a bilinear map. Then, g and f are positive definite.
Definition 1.4 Let V be a vector space over K and let S be a subset of V. Suppose that $x_{1}, x_{2}, \cdots, x_{n}$ is a finite list of vectors with $x_{1}, x_{2}, \cdots, x_{n} \in S$. Then, S spans V iff $x=\alpha_{1} x_{1}+\alpha_{2} x_{2}+\cdots+\alpha_{n} x_{n}$, for $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n} \in K$.

Definition 1.5 Let V be a vector space and let $S \subseteq V$. Assume that S spans V and S must be linearly independent. Then, S is called a basis of V.

Definition 1.6 Suppose that V is a vector space and that $\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ is an ordered basis for V. Take that

$$
\begin{equation*}
a_{i j}=f\left(x_{i}, x_{j}\right) \tag{6}
\end{equation*}
$$

where f is a bilinear map on V. Then, $A=\left(a_{i j}\right)$ is said to be the matrix for f with respect to $\left(x_{1}, x_{2}, \cdots, x_{n}\right)$.

2 Inner product spaces

Definition 2.1 Suppose that $Y=\mathbb{R}$ or $Y=\mathbb{C}$ and that V is a vector space over Y. Take that $<,>: V \times V \longrightarrow Y$ is a function satisfies, for $x, y, z \in V$,

1. $<x, x>\succcurlyeq 0$ and $<x, x>=0 \Leftrightarrow x=0$.
2.

$$
\begin{aligned}
& <x, y>=<y, x>\text { when } Y=\mathbb{C} \\
& <x, y>=<y, x>\text { when } Y=\mathbb{R}
\end{aligned}
$$

3. $<\alpha x+\beta y, z>=\alpha<x, z>+\beta<y, z>$, for $\alpha, \beta \in Y$.

Then, the function $<,>: V \times V \longrightarrow Y$ is called an inner product on V.

Definition 2.2 Suppose that V is a vector space over Y. Take that $<,>: V \times V \longrightarrow Y$ is an inner product on V.

1. When V is a real or complex vector space, V is said to be a real or complex inner product space.
2. When V is a real vector space, V is said to be a Euclidean space.
3. When V is a complex vector space, V is said to be a unitary space.

Definition 2.3 Let $d: X \times X \longrightarrow \mathbb{R}$ be a function where X is a nonempty set and assume that, for $x, y, z \in X$,

1. $d(x, y)=0$ if and only if $x=y$.
2. $0 \preccurlyeq d(x, y) \prec \infty$.
3. $d(x, y)=d(y, x)$.
4. $d(x, z) \preccurlyeq d(x, y)+d(y, z)$.

Then, $d(x, y)$ is said to be the distance from x to y or a metric on X.
Definition 2.4 Suppose that X is a nonempty set and that $d: X \times X \longrightarrow \mathbb{R}$ is a metric on X. Then, X is said to be a metric space.

Remark 2.1 .
For $x \in V$, the norm of x can be represented as

$$
\begin{equation*}
\|x\|=\sqrt{<x, x>} \tag{7}
\end{equation*}
$$

where V is an inner product space.
The polarization identities are presented in the following two theorems where V is a real or complex inner product space.

Theorem 2.1 Let V be a real inner product space and let $x, y \in V$. Then, we have

$$
\begin{equation*}
<x, y>=\frac{1}{4}\left(\|x+y\|^{2}-\|x-y\|^{2}\right) \tag{8}
\end{equation*}
$$

Theorem 2.2 Let V be a complex inner product space and let $x, y \in V$. Then, we get

$$
\begin{equation*}
<x, y>=\frac{1}{4}\left(\|x+y\|^{2}-\|x-y\|^{2}\right)+\frac{1}{4} i\left(\|x+i y\|^{2}-\|x-i y\|^{2}\right) \tag{9}
\end{equation*}
$$

Definition 2.5 Suppose that X is a metric space and that $x \in X$. Let $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ be a sequence of points in X. Then, we can say that $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ converges to x when

$$
\begin{equation*}
\lim _{n \longrightarrow \infty} d\left(x_{n}, x\right)=0 \tag{10}
\end{equation*}
$$

which means that for $\varepsilon \succ 0$ we find an integer $N \succ 0$ with $n \succcurlyeq N \Longrightarrow d\left(x_{n}, x\right) \prec \varepsilon$.
Definition 2.6 Assume that X is a metric space and that $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ is a sequence of points in X. Then, $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ is called a Cauchy sequence when we have that for $\varepsilon \succ 0$ we find an integer $N \succ 0$ with $m, n \succcurlyeq N \Longrightarrow d\left(x_{m}, x_{n}\right) \prec$ ε.

Theorem 2.3 Let $x, y, z \in V$. Then, we have

1. $\|x+y\| \preccurlyeq\|x\|+\|y\|$, (The triangle inequality).
2. $\|x+y\|^{2}+\|x-y\|^{2}=2\|x\|^{2}+2\|y\|^{2}$, (The parallelogram law).
3. $\|x-y\| \preccurlyeq\|x-z\|+\|z-y\|$.
4. $|<x, y>| \preccurlyeq\|x\|\|y\|$, (The Cauchy-Schwarz inequality).
5. $\|x\| \succcurlyeq 0$ and $\|x\|=0$ if and only if $x=0$.

Lemma 2.1 Let X be a metric space and let $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ be a convergent sequence in X. Then, $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ is said to be a Cauchy sequence.

Definition 2.7 Suppose that X is a metric space and that x is an element of X. Take that each Cauchy sequence in X converges to x. Then, X is said to be complete.

Remark 2.2 .

Let V be a real or complex vector space and let

$$
\begin{equation*}
\|x\|=\sqrt{<x, x>} \tag{11}
\end{equation*}
$$

Then, a complete metric space $(V,\|x-y\|)$ is said to be a Hilbert space.

3 Orthogonal sets

Definition 3.1 Suppose that V is an inner product space and that x and y are vectors. Let $<x, y>=0$ for $x, y \in V$. Then, the vectors x and y are called orthogonal and denoted by $x \perp y$.

Definition 3.2 Suppose that V is an inner product space and that A_{1} and A_{2} are subsets with $A_{1}, A_{2} \subseteq V$. Let $x \perp y$ for every $x \in A_{1}$ and $y \in A_{2}$. Then, A_{1} and A_{2} are said to be orthogonal.

Definition 3.3 Let V be an inner product space and let A be a nonempty set of vectors where

$$
\begin{equation*}
A=\left\{x_{i} \backslash i \in K\right\} \tag{12}
\end{equation*}
$$

1. When we have $x_{i} \perp x_{j}$ for $i \neq j, A$ is called orthogonal.
2. When we have

$$
\begin{equation*}
<x_{i}, x_{j}>=\delta_{i, j} \tag{13}
\end{equation*}
$$

A is called orthonormal such that $\delta_{i, j}$ represents the Kronecker delta function with

$$
\delta_{i, j}:= \begin{cases}1 & \text { when } i=j \\ 0 & \text { when } i \neq j\end{cases}
$$

Theorem 3.1 (Pythagoras) Let V be a real or complex inner product space and let $x \perp y$. Then, we have

$$
\begin{equation*}
\|x+y\|^{2}=\|x\|^{2}+\|y\|^{2} . \tag{14}
\end{equation*}
$$

Theorem 3.2 (Gram-Schmidt) Suppose that V is a real or complex inner product space and that $\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ is a basis for V. Then, we say that $\left\{u_{1}, u_{2}, \cdots, u_{n}\right\}$ represents an orthogonal basis for V where

$$
\begin{equation*}
u_{1}=v_{1} \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{j}=v_{j}-\sum_{i=1}^{j-1} \frac{<v_{j}, u_{i}>}{<u_{i}, u_{i}>} u_{i}, j=2, \cdots, n \tag{16}
\end{equation*}
$$

An orthonormal basis for V is given by

$$
\begin{equation*}
\left\{\frac{u_{1}}{\left\|u_{1}\right\|}, \frac{u_{2}}{\left\|u_{2}\right\|}, \cdots, \frac{u_{n}}{\left\|u_{n}\right\|}\right\} \tag{17}
\end{equation*}
$$

4 Orthogonal matrices and their properties

Definition 4.1 Let A be an $n \times n$ matrix over \mathbb{R} and let

$$
\begin{equation*}
A^{T} A=A A^{T}=I_{n} \tag{18}
\end{equation*}
$$

Then, we say that A is an orthogonal matrix.
Theorem 4.1 Let A be an orthogonal matrix. Then, we have
a. A^{-1} is an orthogonal matrix.
b. A^{T} is an orthogonal matrix.

Theorem 4.2 Let A and B be two matrices of order n such that A and B are orthogonal matrices. Then, the product $A B$ represents an orthogonal matrix, on the other hand, the product $B A$ is also orthogonal.

Theorem 4.3 Let A be an orthogonal matrix. Then, the determinant of A is equal to ± 1.

Remark 4.1 .

The group which is denoted by $G L_{n}(\mathbb{R})$ is said to be the general linear group of degree n over \mathbb{R} if $G L_{n}(\mathbb{R})$ is the group of $n \times n$ matrices that are real and nonsingular such that this group is the group under matrix multiplication. On he other hand, the general linear group of degree n over \mathbb{C} is denoted by $G L_{n}(\mathbb{C})$.
The group which id denoted by $O_{n}(\mathbb{R})$ is said to be the orthogonal group if $O_{n}(\mathbb{R})$ is the group of $n \times n$ orthogonal matrices over \mathbb{R} such that this group is the group under multiplication.

5 Unitary matrices and their properties

Definition 5.1 Let A be an $n \times n$ matrix over \mathbb{C} and let

$$
\begin{equation*}
A^{*} A=A A^{*}=I_{n} \tag{19}
\end{equation*}
$$

Then, we say that A is a unitary matrix such that A^{*} is the conjugate transpose of A.
Theorem 5.1 Let A be a unitary matrix. Then, we have that A^{-1} is a unitary matrix.
Theorem 5.2 Suppose that A and B are two matrices of the same order such that A and B are unitary. Then, $A B$ is a unitary matrix.

Remark 5.1 .
The multiplicative group of $n \times n$ unitary matrices over \mathbb{C} is the so-called unitary group and is denoted by $U_{n}(\mathbb{C})$.

References

[1] M. K. Agoston, Computer graphics and geometric modeling : mathematics, Springer, 2005
[2] N. A. Loehr, Bijective combinatorics, CRC Press, 2011
[3] S. Roman, Advanced linear algebra, Springer, 2005
[4] B. Dasgupta, Applied mathematical methods, Pearson Education India, 2006
[5] C. Heil, Introduction to real analysis, Springer, 2019
[6] Elena Deza and Michel-Marie Deza, Dictionary of distances, Elsevier, 2006
[7] T. Lyche, Numerical linear algebra and matrix factorizations, Springer Nature, 2020
[8] B. Ram, Engineering Mathematics-I (For Wbut), Pearson Education India, 2010
[9] J. P. Sharma and M. A. Yeolekar, Engineering Mathematics, Volume II, PHI Learning Private Limited, 2011
[10] K. Singh, Linear algebra: step by step, Oxford University Press, 2014
[11] D. Atanasiu and P. Mikusiński, Linear Algebra: Core Topics for the Second Course, World Scientific, 2023
[12] E. Rukmangadachari, Mathematical methods, Pearson Education India, 2009
[13] E. S. Meckes, The random matrix theory of the classical compact groups, Cambridge University Press, 2019
[14] R. L. Shell and E. L. Hall, Handbook of industrial automation, CRC press, 2000
[15] H. J. Keisler, Elementary calculus: An infinitesimal approach, Courier Corporation, 2013

