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Exercise 1 Let the map g : R−
{

1
2

}
→ R∗ be such that :

g(x) =
9

2x− 1

1. Show that g is a bijection.
a/ g injective :
∀x1, x2 ∈ R−

{
1
2

}
, g(x1) = g(x2)⇒ 9

2x1−1 = 9
2x2−1 ⇒ 9(2x1 − 1) = 9(2x2 − 1)⇒ x1 = x2.

b/ g surjective :
∀y ∈ R∗, ∃x = 9+y

2y
∈ R−

{
1
2

}
/y = g(x).

We verify that 9+y
2y
6= 1

2
:

Suppose that 9+y
2y

= 1
2
then 9 + y = y which implies that 9 = 0 contradiction, then 9+y

2y
6= 1

2
.

g−1 : R∗ → R \
{

1
2

}
x 7−→ g−1(x) = 9+x

2x

2.
g−1 ([−5, 2]) = g−1 ([−5, 0[) ∪ g−1 ({0}) ∪ g−1 (]0, 2]) .

g−1 ({0}) = {x ∈ R∗/ g(x) = 0} = ∅.
We have : (g−1)′(x) = −18

4x2 < 0 which means that the function g′is decreasing, so :
For −5 ≤ x < 0we have g−1(−5) = −2

5
≥ g−1(x) > limx→0< = −∞ then

g−1 ([−5, 0[) =
]
−∞, −2

5

]
.

We also find g−1 (]0, 2]) =
[
11
4
,+∞

[
, with g−1(2) = 11

4
.

We conclude that : g−1 ([−5, 2]) =
]
−∞, −2

5

]
∪
[
11
4
,+∞

[
.

Exercise 2 (Exam January 2023)
We define on R, the composition law ∗ by : ∀x, y ∈ R, x ∗ y = x+ y − 2.

1. Show that (R, ∗) is an abelian group.
a/ ∀x, y ∈ R, x ∗ y = x+ y − 2 ∈ R, so R is closed under the operation ∗.
b/ ∀x, y ∈ R, x ∗ y = x+ y − 2 = y + x− 2 = y ∗ x, so the law ∗ is commutative.
c/ ∀x, y, z ∈ R, x ∗ (y ∗ z) = x ∗ (y + z − 2) = x+ (y + z − 2)− 2 = (x+ y− 2) + z − 2 = (x ∗ y) ∗ z,

so the law ∗ is associative.
d/ ∃?e ∈ R/ ∀x ∈ R, x ∗ e = e ∗ x = x.

x+ e− 2 = x⇒ e = 2.

e/ ∀x ∈ R,∃?x−1 ∈ R/ x ∗ x−1 = x−1 ∗ x = e = 2.
x ∗ x−1 = x+ x−1 − 2 = 2⇒ x−1 = 4− x
(R, ∗) is an abelian group.

2. let n ∈ N∗. We set x(1) = x and x(n+1) = x(n) ∗ x.

(a) x(2) = x(1) ∗ x = x ∗ x = 2x− 2, x(3) = 3x− 4.

(b) Show that ∀n ∈ N∗ : x(n) = nx− 2(n− 1).
i/ Base case : For n = 1we have : x(1) = 1x− 2(1− 1) = x.
ii/ Suppose that x(n) = nx− 2(n− 1) and show that x(n+1) = (n+ 1)x− 2n.

We have : x(n+1) = x(n) ∗ x = x(n) + x− 2 = nx− 2(n− 1) + x− 2 = (n+ 1)x− 2n.

3. Let A = {x ∈ R : x is even}. Show that (A, ∗) is a subgroup of(R, ∗).
a/ e = 2 ∈ A.
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b/ ∀x ∈ A (x = 2p), ∀y ∈ A (y = 2q), x ∗ y = 2p ∗ 2q = 2p+ 2q − 2 = 2(p+ q − 2) ∈ A.
c/ ∀x = 2p ∈ A, x−1 = 4− x = 4− 2p = 2(2− p) ∈ A.

Exercise 3 Let (G, .) be a group, we denote by Z(G) = {x ∈ G/ ∀y ∈ G, xy = yx} the center of G.
1. Show that Z(G) is a subgroup of G.
i/ e ∈ Z(G) because ey = ye = y,∀y ∈ G.
ii/ ∀x, x′ ∈ G, x ∗ x′ ∈?G.

We have x ∈ G⇔ ∀y ∈ G, xy = yx and x′ ∈ G⇔ ∀y ∈ G, x′y = yx′.
Then ∀y ∈ G, (xx′)y = x(x′y) = x(yx′) = (xy)x′ = (yx)x′ = y(xx′) which implies that xx′ ∈ G.

iii/ ∀x ∈ G, x−1 ∈ G, we must have ∀y ∈ G, x−1y = yx−1.
So ∀y ∈ G, x−1y = (y−1x)

−1
= (xy−1)

−1
= yx−1.

Note : xy = x.y, (xy)−1 = y−1x−1, e the identity element and x−1 the inverse of x.

Exercise 4 Let ∗ be a binary operation on R2 defined by :

∀(x, y), (x′, y′) ∈ R2, (x, y) ∗ (x′, y′) = (x+ x′, y + y′ + 2xx′)

1. Show that (R2, ∗) is an abelian group.
a/ ∀(x, y), (x′, y′) ∈ R2, (x, y) ∗ (x′, y′) = (x + x′, y + y′ + 2xx′) ∈ R2, so R2 is closed under the

operation ∗.
b/ ∀(x, y), (x′, y′) ∈ R2, (x, y)∗(x′, y′) = (x+x′, y+y′+2xx′) = (x′+x, y′+y+2x′x) = (x′, y′)∗(x, y)

so the law ∗ is commutative.
c/ ∀(x, y), (x′, y′), (x”, y”) ∈ R2,

((x, y) ∗ (x′, y′)) ∗ (x”, y”) = ((x+ x′, y + y′ + 2xx′)) ∗ (x”, y”) =
(x+ x′ + x”, y + y′ + 2xx′ + y” + 2(x+ x′)x”) · · · · · · (1)
(x, y) ∗ ((x′, y′) ∗ (x”, y”)) = (x, y) ∗ (x′ + x”, y′ + y” + 2x′x”) =
(x+ x′ + x”, y + (y′ + y” + 2x′x”) + 2x(x′ + x”)) · · · · · · (2).
(1) = (2), so the law ∗ is associative.

d/ ∃?(e1, e2) ∈ R2/ ∀(x, y) ∈ R2, (x, y) ∗ (e1, e2) = (e1, e2) ∗ (x, y) = (x, y).
We have (x, y) ∗ (e1, e2) = (x+ e1, y + e2 + 2xe1) = (x, y) wich gives :
x+ e1 = x⇒ e1 = 0 and y + e2 + 2x0 = y ⇒ e2 = 0.
Then (e1, e2) = (0, 0).

d/ ∀(x, y) ∈ R2,∃?(x−1, y−1) ∈ R2/ (x, y) ∗ (x−1, y−1) = (x−1, y−1) ∗ (x, y) = (0, 0).
(x, y) ∗ (x−1, y−1) = (x+ x−1, y + y−1 + 2xx−1) = (0, 0)⇒ x+ x−1 = 0, i.e. x−1 = −x
and y + y−1 + 2xx−1 = 0⇒ y−1 = −y − 2x(−x) = 2x2 − y. So (x−1, y−1) = (−x, 2x2 − y).

2. Show that the curve of equation y = x2 is a subgroup of (R2, ∗) which we will denote P .
i.e. P = {(x, x2)/ x ∈ R} is a subgroup of (R2, ∗).

i/ (0, 0) = (0, 02) ∈ P.
ii/ ∀(x, y), (x′, y′) ∈ P (y = x2, y′ = x′2),

we have (x, y) ∗ (x′, y′) = (x, x2) ∗ (x′, x′2) = (x+ x′, x2 + x′2 + 2xx′) = (x+ x′, (x+ x′)2) ∈ P.
iii/ ∀(x, y) ∈ P, (y = x2), (x−1, y−1) = (−x, 2x2 − y) = (−x, 2x2 − x2) = (−x, (−x)2) ∈ P.
3. Show that the map φ : (R,+)→ (P, ∗), defined by φ(x) = (x, x2) is a group isomorphism.
(a) ∀x, x′ ∈ R, φ(x+ x′) = (x+ x′, (x+ x′)2) = (x+ x′, x2 + x′2 + 2xx′) = (x, x2) ∗ (x′, x′2)
(b) φ bijective.

Exercise 5
∀a, b ∈ A, a⊕ b = a+ b+ 1, a⊗ b = a · b+ a+ b

f : (A,+, ·) −→ (A,⊕,⊗), given by f(a) = a− 1
f an isomorphisme of rings i.e. f an homomorphism of rings and f is bijective.
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1. ∀a, b ∈ A, f(a + b) = a + b− 1, and f(a)⊕ f(b) = (a− 1)⊕ (b− 1) = (a− 1) + (b− 1) + 1.
So f(a+ b) = f(a)⊕ f(b) (group homomorphism).

2. Similarly, we find ∀a, b ∈ A, f(a · b) = f(a)⊗ f(b).
3. f bijective ∀b ∈ A,∃!?(unique)a ∈ A/ b = f(a) = a− 1.

Indeed : ∀b ∈ A,∃!a = b+ 1 ∈ A/ b = f(a).

Exercise 6 Z
[√

2
]
=

{
a+ b

√
2/ a, b ∈ Z

}
subring of R.

1.
i/ 0 + 0

√
2 ∈ Z

[√
2
]
. So Z

[√
2
]
6= ∅.

ii/ ∀x ∈ Z
[√

2
]
(x = a+ b

√
2, a, b ∈ Z), ∀x′ ∈ Z

[√
2
]
(x′ = a′ + b′

√
2, a′, b′ ∈ Z),

x+ x′ = (a+ a′) + (b+ b′)
√
2 ∈ Z

[√
2
]
(a+ a′ ∈ Z and b+ b′ ∈ Z).

Then x+ x′ ∈ Z
[√

2
]
.

iii/ ∀x ∈ Z
[√

2
]
(x = a+ b

√
2, a, b ∈ Z) we have −x = −(a+ b

√
2) = (−a) + (−b)

√
2 ∈ Z

[√
2
]
,

((−a), (−b) ∈ Z).
Z
[√

2
]
is a subgroup of (R,+).

2. ∀x ∈ Z
[√

2
]
(x = a+ b

√
2, a, b ∈ Z), ∀x′ ∈ Z

[√
2
]
(x′ = a′ + b′

√
2, a′, b′ ∈ Z),

x · x′ = (a + b
√
2) · (a′ + b′

√
2) = (aa′ + 2bb′) + (ab′ + ba′)

√
2 ∈ Z

[√
2
]
, ((aa′ + 2bb′) ∈ Z) and

((ab′ + ba′) ∈ Z) ,
then x · x′ ∈ Z

[√
2
]
.

Z
[√

2
]
is a subring of (R,+, ·).
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