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Review

Definition 0.0.1. (Random variable)
A random variable (r. v) is a function from the sample space Ω to the set of all real numbers
R. i.e.

X : Ω 7−→ R
ω 7−→ X(ω)

Exemple 0.0.1. If the sample space corresponds to flipping two different coins, then we
could let X be the total number of heads showing, so;

X(Ω) = {0, 1, 2}

ω TT TH HT HH
X(ω) 0 1 1 2

Definition 0.0.2. (Cumulative Distribution Function)
Given a random variable X , its cumulative distribution function (or cdf for short) is the
function FX defined by

FX : R 7−→ [0, 1]

t 7−→ FX(t) = P [X ≤ t]

Where there is no confusion, we sometimes write F (t) for FX(t) .

Properties of cumulative distribution Function

1. 0 ≤ FX(t) ≤ 1. for all t

2. F (x) ≤ F (y) whenever x ≤ y (i.e., FX is increasing),

3. lim
t→−∞

FX(t) = 0 , lim
t→+∞

FX(t) = 1.
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4. If a ≤ b P [a ≤ X ≤ b] = FX(b)− FX(a).

Definition 0.0.3. (Discrete random variables) A random variable X is discrete if X(Ω) is
a finite or countable sequence of distinct real numbers, and a corresponding sequence.

Definition 0.0.4. For a discrete random variableX , its probability function is the function

P : X(Ω) 7−→ [0, 1]

xi 7−→ P [X = xi]

where X(Ω) = {x1, x2, ..., xn}, such that P (X = xi) = pi for all i, we have
∑

i pi = 1.

Hence,

1. for all x :FX(x) =
∑

xi≤x P [X = xi].

2. The distribution function of X is a staircase function, it jumps to non-zero probabil-
ity points.

Important Discrete Distributions

Exemple 0.0.2. (Bernoulli Distribution) Consider flipping a coin that has probability θ of
coming up heads and probability 1− θ of coming up tails, where 0 ≤ θ ≤ 1.
Let PX(1) = P (X = 1) = θ, while PX(0) = P (X = 0) = 1− θ. The random variable X
is said to have the Bernoulli distribution, we write this as X ; Bernoulli(θ) .

Exemple 0.0.3. (The Binomial Distribution) the Binomial distribution is the sum of n
independent Bernoulli distributions with parameter θ, such that we consider flipping n
coins with independent probability θ of coming up heads and probability 1− θ of coming
up tails, (Again 0 ≤ θ ≤ 1). Let X be be the total number of heads showing. we obtain
then

P [X = k] = Ck
nθ

k(1− θ)n−k where Ck
n =

n!

k!(n− k)!

The random variable X is said to have the Binomial distribution we write this as X ;

Binomial(n, θ)

Exemple 0.0.4. (The Geometric Distribution)
Consider repeatedly flipping a coin that has probability θ of coming up heads and prob-
ability 1 − θ of coming up tails, where again 0 ≤ θ ≤ 1. Let X be the number of tails
that appear before the first head. Then for k ≥ 0, X = k if and only if the coin shows
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exactly k tails followed by a head. The probability of this is equal to (1 − θ)kθ. (In par-
ticular, the probability of getting an infinite number of tails before the first head is equal
to (1 − θ)∞θ = 0, so X is never equal to infinity.) Hence, PX(k) = (1 − θ)kθ ,for
k = 0, 1, 2, 3, .... The random variable X is said to have the Geometric distribution, we
write this as X ; Geometric(θ) .

Exemple 0.0.5. (Poisson Distribution)
Suppose that X has the Binomial distribution (n, θ). Then for 0 ≤ x ≤ n, If we set θ = λ

n

for some value λ > 0 and Let us now consider that n→∞ while keeping x fixed at some
non-negative integer.

lim
n→∞

P [X = k] =
1

k!
exp(−λ)λk

We can phrase this result as follows. If we flip a very large number of coins n, and each
coin has a very small probability θ = λ

n
of heads coming up, then the probability that the

total number of heads will be k is approximately given by exp(−λ)λk/k!. The random
variable X is said to have the Poisson distribution, we write this as X ; Poisson(λ)

Exemple 0.0.6. (The Hypergeometric Distribution)
the hypergeometric distribution will apply to any context wherein we are sampling without
replacement from a finite set of N elements and where each element of the set either has
a characteristic or does not. For example, if we randomly select people to participate
in an opinion poll so that each set of n individuals in a population of N has the same
probability of being selected, then the number of people who respond yes to a particular
question is distributed Hypergeometric(N,M, n) where M is the number of people in the
entire population who would respond yes.
Hence,

P (X = k) =
Ck
MC

n−k
N−M

Cn
N

Definition 0.0.5. (Continuous random variables)
A random variable X is continuous if X(Ω) is an interval (part of R) so P (X = x) = 0

Definition 0.0.6. We call a function f : R→ R a density function if
For all x ∈ R: f(x) ≥ 0∫ +∞
−∞ f(x)dx = 1

Definition 0.0.7. A random variable X is absolutely continuous if there is a density func-
tion f , such that

P (a ≤ X ≤ b) =

∫ b

a

f(x)dx
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whenever a ≤ b
An absolutely continuous random variable is a continuous variable.

Definition 0.0.8. The cumulative distribution function of a continuous random variable is
defined by

∀x ∈ R : FX(x) =

∫ x

−∞
f(t)dt

Important Absolutely Continuous Distributions
Exemple 0.0.7. (The Uniform Distribution)
Let L and R be any two real numbers with L,R ∈ R. Consider a random variable X such
that

f(x) =

{
1

R−L L ≤ x ≤ R

0 otherwise

The random variable X is said to have the Uniform[L,R] distribution, we write this as
X ; Uniform[L,R].

Exemple 0.0.8. (Gauss distribution (Normal distribution))
Let X be a random variable having the density function given by

∀x ∈ R, µ ∈ R;σ ∈ R+, f(x) =
1

σ
√

2π
exp(−1

2

(
x− µ
σ

)2

)

The random variable X is said to have the normal distribution noted by N(µ, σ2).
If µ = 0 and σ = 1, then this corresponds with the standard normal distribution, we write
this as X ; N(0, 1). then the density function of X is

f(x) =
1√
2π

exp(−1

2
x2)

Exemple 0.0.9. (Distributions derived from the normal distribution)
• Let these random variables X1, . . . , Xn be independent and distributed to a standard
normal distribution, for all i we have, Xi ; N(0, 1)
If S = X2

1 +X2
2 + · · ·+X2

n, then S have the Chi squared distribution which has n degrees
of freedom.
We note S ; χ2(n).
• Let the independent random variables U, V , where U ; N (0; 1) and V ; χ2

n.d.d.l ,

If Tn =
U√
V
n

then Tn follows the Student distribution with n degrees of freedom.

Notation: Tn ; Tn
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Chapter 1

Expectation

the expected value of a random variable is the average value that the random variable takes
on. For example, if half the time X = 0, and the other half of the time X = 10, then the
average value of X is 5. We shall write this as E(X) = 5. Similarly, if one third of the
time Y = 6 while two thirds of the time Y = 15, then E(Y ) = 12.
To understand expected value more precisely, we consider discrete and absolutely contin-
uous random variables separately.

SECTION 1.1

The Discrete Case

Definition 1.1.1. Consider a random variableX with a finite list x1, ..., xk of possible out-
comes, each of which (respectively) has probability P1, ..., Pk (i = 1, ..., kPi = P (X = xi))
of occurring. The expectation of X is defined as

E(X) = x1P1 + x2P2 + · · ·+ xkPk =
k∑
i=1

xiPi

Exemple 1.1.1. Let X represent the outcome of a roll of a fair six-sided die. The possible
values for X are 1, 2, 3, 4, 5, and 6, all of which are equally likely with a probability of
1/6. The expectation of X is

E(X) = 1 · 1

6
+ 2 · 1

6
+ 3 · 1

6
+ 4 · 1

6
+ 5 · 1

6
+ 6 · 1

6
= 3.5.

Exemple 1.1.2. Suppose that P (Y = −3) = 0.2, and P (Y = −11) = 0.7, and P (Y =
31) = 0.1. Then
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E(Y ) = (−3)0.2 + (−11)0.7 + (31)0.1 = −0.6− 7.7 + 3.1 = −5.2

In this case, the expected value of Y is negative

We now consider some of the common discrete distributions introduced above

Exemple 1.1.3. (Bernoulli distribution)
If X ; Bernoulli(θ) , then P (X = 1) = θ and P (X = 0) = 1− θ , so

E(X) = (1)θ + 0(1− θ) = θ

Exemple 1.1.4. (Binomial distribution)
If Y ; Binomial(n, θ) , then P (Y = k) == Ck

n × θk × (1 − θ)n−k, for k = 1, ..., n.
Hence

E(Y ) =
n∑
k=1

kP (Y = k) =
n∑
k=1

kCk
nθ

k(1− θ)n−k

=
n∑
k=1

k
n!

k!(n− k)!
θk(1− θ)n−k =

n∑
k=1

n!

(k − 1)!(n− k)!
θk(1− θ)n−k

=
n∑
k=1

n(n− 1)!

(k − 1)!(n− k)!
θk(1− θ)n−k =

n∑
k=1

nCk−1
n−1θ

k(1− θ)n−k

Now, the binomial theorem says that for any a and b and any positive integer m,

(a+ b)m =
m∑
j=0

Cj
ma

jbm−j

Using this, and setting j = k − 1, we see that

E(Y ) =
n∑
k=1

nCk−1
n−1θ

k(1− θ)n−k =
n−1∑
j=0

nCj
n−1θ

j+1(1− θ)n−1−j

= nθ
n−1∑
j=0

Cj
n−1θ

j(1− θ)n−1−j

= nθ
[
(θ + 1− θ)n−1

]
Hence E(Y ) = nθ.
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SECTION 1.2

The Absolutely Continuous Case

Definition 1.2.1. Let X be an absolutely continuous random variable, with density func-
tion f(x) . Then the expected value of X is given by

E(X) =

∫ +∞

−∞
xf(x)dx

From this definition, it is not too difficult to compute the expected values of many of the
standard absolutely continuous distributions.

Exemple 1.2.1. (The Uniform Distribution)
Let X ; Uniform[L,R] so that the density of X is given by

f(x) =

{
1

R−L L ≤ x ≤ R

0 otherwise

Hence,

E(X) =

∫ +∞

−∞
xf(x)dx =

∫ R

L

x
1

R− Ldx =
x2

2(R− L)

]x=R
x=L

=
R2 − L2

2(R− L)
=

(R− L)(R + L)

2(R− L)
=
R = L

2

Thus E(X) =
R = L

2

SECTION 1.3

Properties

1. If X = Y , then E(X) = E(Y ) In other words, if X and Y are random variables
that take different values with probability zero, then the expectation of X will equal
the expectation of Y .

2. If X = c for some real number c, then E(X) = c. In particular, for a random
variable X with well-defined expectation, E[E(X)] = E(X). A well defined ex-
pectation implies that there is one number, or rather, one constant that defines the
expected value. Thus follows that the expectation of this constant is just the original
expected value.
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Theorem 1.3.1. (Law of the unconscious statistician)
LetX be a random variable, and let g : R→ R be some function such that the expectation
of the random variable g(X) exists. Then

E[g(x)] =
∑
x

g(x)P (X = x)

(
E[g(x)] =

∫
R
g(x)f(x)

)

Theorem 1.3.2. (Linearity of expected values) Let X and Y be random variables, and let
a and b be real numbers, and put Z = aX + bY . Then

E(Z) = aE(X) + bE(Y )

.

Theorem 1.3.2 says, in particular, that E(X + Y ) = E(X) + E(Y ), i.e., that expectation
preserves sums. It is reasonable to ask whether the same property holds for products. That
is, do we necessarily have E(XY ) = E(X)E(Y ) ? In general, the answer is no, as the
following example shows.
On the other hand, if X and Y are independent, then we do have E(X)E(Y ) = E(XY ).

Theorem 1.3.3. LetX and Y be independent random variables. ThenE(XY ) = E(X)E(Y ).

Theorem 1.3.3 will be used often in subsequent chapters, as will the following important
property.

Theorem 1.3.4. (Monotonicity)
Let X and Y be discrete random variables, and suppose that X ≤ Y . (Remember that
this means X(s) ≤ Y (s) for all s ∈ Ω). Then E(X) ≤ E(Y ).

SECTION 1.4

Variance, Covariance, and Correlation

Now that we understand expected value, we can use it to define various other quantities of
interest. The numerical values of these quantities provide information about the distribu-
tion of random variables.
Given a random variableX , we know that the average value ofX will be E(X). However,
this tells us nothing about how far X tends to be from E(X). For that, we have the
following definition.
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Definition 1.4.1. The variance of a random variable X is the quantity

σ2 = V ar(X) = E
(
(X − µX)2

)
Where µX = E(X) is the mean of X

We note that it is also possible to write V ar(X) = E ((X − E(X))2), however the multi-
ple uses of "E" may be confusing.

Remark 1.4.1. We often use the variance in the form

V ar(X) = E(X2)− µ2
X

(That is, variance is equal to the second moment minus the square of the first moment.)

Proof. Using the property 2and the theorem 1.3.2 we could clearly find that

E(X) =E((X − µX)2) = E(X2 − 2XµX + µ2
X)

= E(X2)− 2µXE(X) + µ2
X = E(X2)− 2µ2

X + µ2
X

= E(X2)− µ2
X

as claimed.

Also, because (X − µX)2is always non-negative, its expectation is always defined, so the
variance of X is always defined. Intuitively, the variance V ar(X) is a measure of how
spread out the distribution of X is, or how random X is, or how much X varies, as the
following example illustrates.

Exemple 1.4.1. LetX and Y be two discrete random variables, with probability functions

P (X = x) =

{
1 x = 10

0 otherwise

and

P (Y = y) =


1/2 y = 5

1/2 y = 15

0 otherwise

respectively.
Then E(X) = E(Y ) = 10. However,

V ar(X) = E(X2)− E(X)2 = 100− 100 = 0
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while

V ar(Y ) = E(Y 2)− E(Y )2 = 52(1/2) + 152(1/2)− 102 = 25

We can see that, while X and Y have the same expected value, the variance of Y is much
greater than that of X . This corresponds to the fact that Y is more random than X , that
is, it varies more than X does.

Exemple 1.4.2. Let Y ; Bernoulli(θ). Then E(Y ) = θ . Hence,

V ar(Y ) = E(Y 2)− E(Y ) = 12θ + 02(1− θ)− θ2 = θ − θ2 = θ(1− θ)

The square in the definition 1.4.1 implies that the “scale” of V ar(X) is different from the
scale of X . For example, if X were measuring a distance in meters (m), then V ar(X)
would be measuring in meters squared (m2). If we then switched from meters to millime-
ter, we would have to multiply X by 1000 but would have to multiply V ar(X) by about
(1000)2.
To correct for this “scale” problem, we can simply take the square root, as follows.

Definition 1.4.2. The standard deviation of a random variable X is the quantity

σ(X) =
√
V ar(X) =

√
E(X2)− E(X)2

It is reasonable to ask why, in 1.4.1, we need the square at all. Now, if we simply omitted
the square and considered E(X−µX) , we would always get zero (because µX = E(X) ),
which is useless. On the other hand, we could instead use E(|X − µX |) . This would, like
1.4.1, be a valid measure of the average distance of X from µX . Furthermore, it would not
have the “scale problem” that V ar(X) does. However, we shall see that V ar(X) has many
convenient properties. By contrast, E(|X − µX |) is very difficult to work with. Thus, it is
purely for convenience that we define variance by E((X−µX)2) instead of E(|X−µX |).
The variance has a great importance. Thus, we pause to present some important properties
of it.

Theorem 1.4.1. Let X be any random variable, with expected value µX = E(X), and
variance V ar(X). Then the following hold true:
(a)V ar(X) ≥ 0.
(b) If a and b are real numbers, V ar(aX + b) = a2V ar(X).
(c) V ar(X) ≤ E(X2).

Proof. (a) This is immediate, because we always have (µX −X)2 ≥ 0.
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(b) We note that µaX+b = E(aX+ b) = aE(X) + b = aµX + b, by linearity. Hence, again
using linearity,

V ar(aX + b) =E((aX + b− µaX+b)
2) = E((aX + b− aµX − b)2)

= E(a2(X − µX)2) = a2E((X − µX)2)

= a2V ar(X)

(d) This follows immediately from part (c) because we have −µ2
X ≤ 0.

Corollary 1.4.1. Let X be any random variable, with standard deviation σ(X) , and let a
be any real number. Then σ(aX) = |a|σ(X) .

Exemple 1.4.3. Variance and Standard Deviation of the N(µ, σ2) Distribution Suppose
that X ; N(µ, σ2). Before we established that E(X) = µ Now we compute V ar(X).
First consider Z ; N(0, 1) Then we have that

V ar(Z) = E(Z2) =

∫ +∞

−∞

z2√
2π

exp(−z
2

2
)dz

Then using integration by parts, we put u = z and v′ = z exp(− z2

2
) so(u′ = 1 and

v = − exp(− z2

2
), we obtain

E(Z2) =
1√
2π
z exp(−z

2

2
)

]+∞
−∞

+

∫ +∞

−∞

1√
2π

exp(−z
2

2
)dz = 1

and σ(Z) = 1
Now, for σ > 0 put X = µZ + σ We then have X ; N(µ, σ2). From Theorem 1.4.1(b)
we have that

V ar(X) = σ2V ar(Z) = σ2

and σ(X) = σ This establishes the variance of the N(µ, σ2) distribution as σ2 and the
standard deviation as σ

So far we have considered the variance of one random variable at a time. However, the
related concept of covariance measures the relationship between two random variables.

Definition 1.4.3. The covariance of two random variables X and Y is given by

Cov(X, Y ) = E((X − µX)(Y − µY ))

where µX = E(X) and µY = E(Y ).

13



Theorem 1.4.2. Let X and Y be two random variables. Then

Cov(X, Y ) = E(XY )− E(X)E(Y )

Proof. Using linearity, we have

Cov(X, Y ) =E((X − µX)(Y − µY )) = E(XY −XµY − µXY + µXµY )

= E(XY )− µYE(X)− µXE(Y ) + µXµY = E(XY )− 2µXµY + µXµY

Cov(X, Y ) =E(XY )− µXµY = E(XY )− E(X)E(Y )

Exemple 1.4.4. LetX and Y be discrete random variables, with joint probability function
PXY given

P (X = x, Y = y) =


1/2 x = 3 =, y = 4

1/3 x = 3, y = 6

1/6 x = 5, y = 6

0 otherwise

then E(X) = 3(1/2 + 1/3) + 5(1/6) = 10/3, E(Y ) = 4(1/2) + 6(1/3 + 1/6) = 5. and
E(XY ) = 3× 4(1/2) + 3× 6(1/3) + 5× 6(1/6) = 17. Hence

Cov(X, Y ) = E(XY )− E(X)E(Y ) = 17− (10/3)5 = 1/3

We note in particular that Cov(X, Y ) can be positive or a negative value. Intuitively,
when positive, this says that Y increases when X increases, otherwise when negative, Y
decreases when X increases.
We begin with some simple facts about covariance. Obviously, we always haveCov(X, Y ) =
Cov(Y,X) We also have the following result.

Theorem 1.4.3. (Linearity of covariance)
Let X, Y , and Z be three random variables. Let a and b be real numbers. Then

Cov(aX + bY, Z) = aCov(X,Z) + bCov(Y, Z)

Corollary 1.4.2. If X and Y are independent, then Cov(X, Y ) = 0.

Proof. Because X and Y are independent, we know (Theorem 1.3.3) that E(XY ) =
E(X)E(Y ). Hence, the result follows immediately from Theorem 1.4.2

14



We note that the converse to the previous Corollary is false, as the following example
shows.

Exemple 1.4.5. Covariance 0 Does Not Imply Independence.
Let X and Y be discrete random variables, with joint probability function PXY given by

P (X = x, Y = y)



1/4 x = 3, y = 5

1/4 x = 4, y = 9

1/4 x = 7, y = 5

1/4 x = 6, y = 9

0 otherwise

then, E(X) = 3(1/4) + 4(1/4) + 7(1/4) + 6(1/4) = 5, E(Y ) = 5(1/4 + 1/4) + 9(1/4 +
1/4) = 7 and E(XY ) = 3× 5(1/4) + 4× 9(1/4) + 7× 5(1/4) + 6× 9(1/4) = 35, We
obtain Cov(X, Y ) = E(XY )− E(X)E(Y ) = 35− 5× 7 = 0
On the other hand, X and Y are clearly not independent.

There is also an important relationship between variance and covariance.

Theorem 1.4.4. For any random variables X and Y ,

V ar(X + Y ) = V ar(X)V ar(Y ) + 2Cov(X, Y )

Another concept very closely related to covariance is correlation.

Definition 1.4.4. The correlation of two random variables X and Y is given by

ρ(X, Y ) = Corr(X, Y ) =
Cov(X, Y )

σ(X)σ(Y )
=

Cov(X, Y )√
V ar(X)

√
V ar(Y )

provided V ar(X), V ar(Y ) are not null.

Exemple 1.4.6. Let X be any random variable with V ar(X) > 0, let Y = 3X , and let
Z = −4X . Then Cov(X, Y ) = 3V ar(X) and Cov(X,Z) = −4V ar(X) using theorem
1.4.4 . We know also that, σ(Y ) = 3σ(X)and σ(Z) = 4σ(X). Hence,

ρ(X, Y ) =
Cov(X, Y )

σ(X)σ(Y )
=

3V ar(X)

3σ(X)σ(X)
= 1

because σ(X)2 = V ar(X). Also, we have that

ρ(X,Z) =
Cov(X,Z)

σ(X)σ(Z)
=
−4V ar(X)

4σ(X)σ(X)
= −1
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Intuitively, this again says that Y increases when X increases, whereas Z decreases when
X increases. However, note that the scale factors 3 and (-4) have cancelled out, only their
signs were important.

we always have −1 ≤ ρ(X, Y ) ≤ 1, for any random variables X and Y . Hence, in the
Example above, Y has the largest possible correlation withX (which makes sense because
Y increases whenever X does, without exception), while Z has the smallest possible cor-
relation with X (which makes sense because Z decreases whenever X does). We will also
see that ρ(X, Y ) is a measure of the extent to which a linear relationship exists between
X and Y .

SECTION 1.5

Conditional Expectation

We have seen before that conditioning on some event, or some random variable, can
change various probabilities. Now, because expectations are defined in terms of proba-
bilities, it seems reasonable that expectations should also change when conditioning on
some event or random variable. Such modified expectations are called conditional expec-
tations, as we now discuss.

1.5.1 Discrete case
The simplest case is whenX is a discrete random variable, andA is some event of positive
probability. We have the following.

Definition 1.5.1. Let X be a discrete random variable, and let A be some event with
P (A) > 0. Then the conditional expectation of X given A, is equal to

E(X|A) =
∑
x∈R

xP (X = x|A) =
∑
x∈R

x
P (X = x,A)

P (A)

Exemple 1.5.1. Consider rolling a fair six-sided die, so that S = {1, 2, 3, 4, 5, 6}. Let X
be the number showing, so that X(s) = s for s ∈ S. Let A = {3, 5, 6} be the event that
the die shows 3, 5, or 6. What is E(X|A) ?
Here we know that
P (X = s|A) = P (X = s|X = 3, 5or6) and that,P (X = 3|A) = P (X = 3|X =
3, 5or6) = 1/3 and that, similarly, P (X = 5|A) = P (X = 6|A) = 1/3. While P (X =
1, 2, 4|A) = 0.

16



Hence,

E(X|A) =3P (X = 3|A) + 5P (X = 5|A) + 6P (X = 6|A)

= 3(1/3) + 5(1/3) + 6(1/3) = 14/3

Often we wish to condition on the value of some other random variable. If the other
random variable is also discrete, and if the conditioned value has positive probability, then
this works as above.

Definition 1.5.2. Let X and Y be discrete random variables, with P (Y = y) > 0. Then
the conditional expectation of X given Y = y, is equal to

E(X|Y = y) =
∑
x∈R

xP (X = x|Y = y) =
∑
x∈R

x
P (X = x, Y = y)

P (Y = y)

Exemple 1.5.2. Suppose the joint probability function of X and Y is given by

P (X = x, Y = y) =



1/7 x = 5, y = 0

1/7 x = 5, y = 3

1/7 x = 5, y = 4

3/7 x = 8, y = 0

1/7 x = 8, y = 4

0 otherwise

then,

E(X|Y = 0) =
∑
x∈R

xP (X = x|Y = 0)

= 5P (X = 5|Y = 0) + 8P (X = 8|Y = 0) = 5
P (X = 5, Y = 0)

P (Y = 0)
+ 8

P (X = 8, Y = 0)

P (Y = 0)

= 5
1/7

1/7 + 3/7)
+ 8

3/7

1/7 + 3/7
=

29

4

Similarly we find

E(X|Y = 4) =
∑
x∈R

xP (X = x|Y = 4)

= 5P (X = 5|Y = 4) + 8P (X = 8|Y = 4) = 5
P (X = 5, Y = 4)

P (Y = 4)
+ 8

P (X = 8, Y = 4)

P (Y = 4)

= 5
1/7

1/7 + 1/7)
+ 8

1/7

1/7 + 1/7
=

13

2
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Also

E(X|Y = 3) =
∑
x∈R

xP (X = x|Y = 3)

= 5P (X = 5|Y = 3) = 5
P (X = 5, Y = 3)

P (Y = 3)
= 5

1/7

1/7
= 5

Sometimes we wish to condition on a random variable Y , without specifying in advance
on what value of Y we are conditioning. In this case, the conditional expectation E(X|Y )
is itself a random variable — namely, it depends on the (random) value of Y that occurs.

Definition 1.5.3. Let X and Y be discrete random variables. Then the conditional expec-
tation ofX given Y , is the random variable E(X|Y ) which is equal to E(X|Y = y) when
Y = y. In particular, E(X|Y ) is a random variable that depends on the random value of
Y

Exemple 1.5.3. Suppose again that the joint probability function of X and Y is given by

P (X = x, Y = y) =



1/7 x = 5, y = 0

1/7 x = 5, y = 3

1/7 x = 5, y = 4

3/7 x = 8, y = 0

1/7 x = 8, y = 4

0 otherwise

We have already computed that E(X|Y = 0) = 29/4, E(X|Y = 4) = 13/2, and
E(X|Y = 3) = 5. We can express these results together by saying that

E(X|Y ) =


29/4 Y = 0

5 Y = 3

13/2 Y = 4

That is, E(X|Y ) is a random variable, which depends on the value of Y . Note that,
because P (Y = y) = 0 for y 6= 0, 3, 4, the random variable E(X|Y ) is undefined in that
case.

Finally, we note that just like for regular expectation, conditional expectation is linear.

Theorem 1.5.1. Let X1, X2, and Y be random variables, let A be an event, let ab, and y
be real numbers, and let Z = aX1 + bX2. Then
(a) E(Z|A) = aE(X1|A) + bE(X2|A).
(b) E(Z|Y = y) = aE(X1|Y = y) + bE(X2|Y = y).
(c) E(Z|Y ) = aE(X1|Y ) + bE(X2|Y ).

18



1.5.2 Absolutely Continuous Case
Definition 1.5.4. Let X and Y be jointly absolutely continuous random variables, with
joint density function f(x, y) . Then the conditional expectation of X given Y = y, is
equal to

E(X|Y = y) =

∫
R
xf(x|y)dx =

∫
R
x
f(x, y)

f(y)
dx

Exemple 1.5.4. Let X and Y be jointly absolutely continuous, with joint density function
f(x, y) given by

f(x, y) =

{
4x2y + 2y5 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

0 otherwise

Then for 0 ≤ y ≤ 1,

f(y) =

∫ ∞
−∞

f(x, y)dx =

∫ 1

0

4x2y + 2y5dx = 4y/3 + 2y5

Hence,

E(X|Y = y) =

∫ ∞
−∞

x
f(x, y)

f(y)
dx =

∫ 1

0

x
4x2y + 2y5

4y/3 + 2y5
dx =

y + y5

4y/3 + 2y5
=

1 + y4

4/3 + 2y4

As in the discrete case, we often wish to condition on a random variable without specifying
in advance the value of that variable. Thus,E(X|Y ) is again a random variable, depending
on the random value of Y .

Definition 1.5.5. Let X and Y be jointly absolutely continuous random variables.
Then the conditional expectation of X given Y , is the random variable E(X|Y ) which is
equal to E(X|Y = y) when Y = y. Thus, E(X|Y ) is a random variable that depends on
the random value of Y .

Exemple 1.5.5. Let X and Y again have joint density

f(x, y) =

{
4x2y + 2y5 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

0 otherwise

We already know that E(X|Y = y) = 1+y4

4/3+2y4
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This formula is valid for any y between 0 and 1, so we conclude that

E(X|Y ) =
1 + y4

4/3 + 2y4

Note that in this last formula, Y is a random variable, so E(X|Y ) is also a random
variable.

Finally, we note that in the absolutely continuous case, conditional expectation is still
linear.
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Chapter 2

Sampling Distributions and Limits

In many applications of probability theory, we will be faced with the following problem.
Suppose that X1, X2, Xn is an identically and independently distributed (i.i.d.) sequence,
i.e., X1, X2, Xn is a sample from some distribution, and we are interested in the distribu-
tion of a new random variable Y = h(X1, X2, Xn) for some function h In particular, we
might want to compute the distribution function of Y or perhaps its mean and variance.
The distribution of Y is sometimes referred to as its sampling distribution, as Y is based
on a sample from some underlying distribution.
Quite often, however, exact results are impossible to obtain, as the problem is just too
complex. In such cases, we must develop an approximation to the distribution of Y
For many important problems, a version of Y is defined for each sample size n (e.g., a
sample mean or sample variance), so that we can consider a sequence of random variables
Y1, Y2... etc. This leads us to consider the limiting distribution of such a sequence so that,
when n is large, we can approximate the distribution of Yn by the limit, which is often
much simpler. This approach leads to a famous result, known as the central limit theorem,
discussed below.

SECTION 2.1

Sampling Distributions

Let us consider a very simple example.

Exemple 2.1.1. Suppose we obtain a sample X1, X2 of size n = 2 from the discrete
distribution with probability function given by
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PX(x) =


1/2 x = 1

1/4 x = 2

1/4 x = 3

0 otherwise

Let us take Y2 = (X1X2)
1/2. This is the geometric mean of the sample values (the geo-

metric mean of n positive numbers x1, ..., xn is defined as (x1...xn)1/n. To determine the
distribution of Y2 we first list the possible values for Y2 the samples that give rise to these
values, and their probabilities of occurrence. The values of these probabilities specify the
sampling distribution of Y We have the following table.

y Sample PY2(y)
1 (1,1) (1/2)(1/2)= 1/4√
2 (1,2), (2,1) (1/2)(1/4)+(1/4)(1/2)=1/4√
3 (1,3), (1,3) (1/2)(1/4)+(1/4)(1/2)=1/4

2 (2,2) (1/4)(1/4)= 1/16√
6 (2,3), (3,2) (1/4)(1/4)+(1/4)(1/4)=1/8

3 (3,3) (1/4)(1/4)= 1/16

Now suppose instead we have a sample X1, ..., X20 of size n = 20 and we want to find the
distribution of Y20 = (X1...X20)

1/20.Obviously, we can proceed as above, but this time the
computations are much more complicated, as there are now 320 = 3, 486, 784, 401 possible
samples, as opposed to the 32 = 9 samples used to form the previous table. Directly
computing PY20 , as we have done for PY2 , would be onerous — even for a computer! So
what can we do here?
One possibility is to look at the distribution of Yn = (X1...Xn)1/n when n is large and
see if we can approximate this in some fashion.

SECTION 2.2

Convergence in Probability

Notions of convergence are fundamental tool of mathematics. For example, if an = 1 −
1/n, then a1 = 0, a2 = 1/2, a3 = 2/3, a4 = 3/4, etc. We see that the values of an are
getting “ closer and closer ” to 1, and indeed we know from calculus that lim

n→∞
an = 1

in this case. For random variables, notions of convergence are more complicated. If the
values themselves are random, then how can they “converge” to anything? On the other
hand, we can consider various probabilities associated with the random variables and see
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if they converge in some sense. The simplest notion of convergence of random variables
is convergence in probability, as follows. (Other notions of convergence will be developed
in subsequent sections.)

Definition 2.2.1. Let X1, X2... be an infinite sequence of random variables, and let Y be
another random variable. Then the sequence Xn converges in probability to Y , if for all
ε > 0, we have

lim
n→∞

P (|Xn − Y | ≥ ε) = 0

and we write Xn
P−→ Y

In Figure 2.1, we have plotted the differences (Xn − Y ) for selected values of n for 10
generated sequences {Xn − Y } for a typical situation where the random variables Xn

converge to a random variable Y in probability We have also plotted the horizontal lines at
for ±ε, ε = 0.25 From this we can see the increasing concentration of the distribution of
Xn − Y about 0, as n increases, as required by Definition 2.2.1. In fact, the 10 observed
values of X100 − Y all satisfy the inequality |X100 − Y | < 0.25

Figure 2.1: Plot of 10 replications of Xn−Y illustrating the convergence in probability of
Xn to Y

We consider some applications of this definition.

Exemple 2.2.1. Let Y be any random variable, and let X1 = X2 = X3 = Y. (That is, the
random variables are all identical to each other.) In that case, |Xn− Y | = 0, so of course

lim
n→∞

P (|Xn − Y | ≥ ε) = 0
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for all ε > 0. Hence, Xn
P−→ Y.

Exemple 2.2.2. Suppose P (Xn = 1 + 1/n) = 1 and P (Y = 1) = 1. Then P (|Xn−Y | ≥
ε) = 1 whenever n < 1/ε . Hence, P (|Xn − Y | ≥ ε)→ 0 as n→∞ for all ε. Hence, the
sequence Xn converges in probability to Y . (Here, the distributions of Xn and Y are all
degenerate.)

2.2.1 The Weak Law of Large Numbers
One of the most important applications of convergence in probability is the weak law of
large numbers. Suppose that X1, X2... is a sequence of independent random variables that
each have the same mean. For large n, what can we say about their average

Mn =
1

n
(X1 + · · ·+Xn)?

We refer to Mn as the sample average, or sample mean, for X1, ..., Xn When the sample
size n is fixed, we will often use X̄ as a notation for sample mean instead of Mn.
For example, if we flip a sequence of fair coins, and if Xi = 1 or Xi = 0 as the ith coin
comes up heads or tails, then Mn represents the fraction of the first n coins that came up
heads. We might expect that for large n, this fraction will be close to 1/2, i.e., to the
expected value of the Xi.
The weak law of large numbers provides a precise sense in which average values Mn tend
to get close to E(Xi), for large n.

Theorem 2.2.1. (Weak law of large numbers)
Let X1, X2... be a sequence of independent random variables, each having the same mean
µ and each having variance less than or equal to v <∞. Then,

∀ε ≥ 0, lim
n→∞

P (|Mn − µ| ≥ ε) = 0

That is, the averages converge in probability to the common mean µ (Mn
P−→ µ).

Exemple 2.2.3. Consider flipping a sequence of identical coins, each of which has proba-
bility p of coming up heads. LetMn again be the fraction of the first n coins that are heads.
Then by the weak law of large numbers, for any ε ≥ 0, lim

n→∞
P (p− ε < Mn < p+ ε) = 1.

Thus we see that for a large n, it is very likely that Mn is very close to p. (The previous
example corresponds to the special case p = 1/2.)

Exemple 2.2.4. Let X1, X2... be i.i.d. with distribution N(3, 5) Then by the weak law of
large numbers, P (3 − ε < Mn < 3 + ε) → 1 as n → ∞. Hence, for a larger n, the
average value Mn is very close to 3.
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SECTION 2.3

Convergence Almost Surely

A notion of convergence for random variables that is closely associated with the conver-
gence of a sequence of real numbers is provided by the concept of convergence almost
surely (with probability 1). This property is given in the following definition.

Definition 2.3.1. Let X1, X2... be an infinite sequence of random variables. We shall
say that the sequence Xi converges almost surely (a.s.) (with probability 1) to a random
variable Y , if P ( lim

n→∞
Xn = Y ) = 1 and we write Xn

a.s→ Y.

In Figure 2.2, we illustrate this convergence by graphing the sequence of differences (Xn−
Y ) for a typical situation where the random variables Xn converge to a random variable
Y almost surely. We have also plotted the horizontal lines at ±ε for ε = 0.1. Notice that
inevitably all the values (Xn − Y ) are in the interval (-0,1 0.1) or, in other words, the
values of Xn are within 0.1 of the values of Y
Definition 2.3.1 indicates that for any given ε ≥ 0 there will exist a value nε such that
(Xn − Y ) for every n ≥ nε The value of nε will vary depending on the observed value of
the sequence (Xn − Y ) but it always exists. Contrast this with the situation depicted in
Figure 2.1, which only says that the probability distribution (Xn − Y ) concentrates about
0 as n grows and not that the individual values of (Xn − Y ) will necessarily all be near 0.

Figure 2.2: Plot of a single replication {Xn−Y } illustrating the convergence almost surely
of Xn to Y .
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One might wonder what the relationship is between convergence in probability and con-
vergence almost surely. The following theorem provides an answer.

Theorem 2.3.1. Let Z,Z1, Z2... be random variables. Suppose Zn converges to Z almost
surely. Then Zn converges to Z in probability. That is, if a sequence of random variables
converges almost surely, then it converges in probability to the same limit.

Lemma 2.3.1. Let X1, X2, ... be a sequence of events in some probability space. The
Borel–Cantelli lemma states If the sum of the probabilities of the events {Xn} is finite∑

n≥1
P (Xn) <∞

then the probability that infinitely many of them occur is 0, that is,

P (lim sup
n→∞

Xn) = 0

A related result, sometimes called the second Borel–Cantelli lemma, states If the events
(Xn) are independent and the sum of the probabilities of the (Xn) diverges to infinity, then
the probability that infinitely many of them occur is 1. That is

If
∑

n≥1 P (Xn) =∞ and the events (Xn)∞n=1 are independent, then P (lim sup
n→∞

Xn) = 1

On the other hand, the converse to the Theorem above is false, as the following example
shows.

Exemple 2.3.1. Consider a sequence (Xn) of independent random variables such that
P (Xn = 1) = 1

n
and P (Xn = 0) = 1− 1

n
.

For 0 < ε < 1/2, we have P (|Xn| ≥ ε) = 1
n

which converges to 0, hence Xn
P→ 0.

Since
∑

n≥1 P (Xn = 1) = +∞ and the events (Xn = 1) are independent, second Borel-
Cantelli lemma ensures that P (lim sup

n→∞
Xn = 1) = 1.

Hence the sequence (Xn) does not converge to 0 almost everywhere (in fact the set on
which this sequence does not converge to 0 has probability 1).

2.3.1 The Strong Law of Large Numbers
The following is a strengthening of the weak law of large numbers because it concludes
convergence with almost surely probability instead of just convergence in probability.
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Theorem 2.3.2. (Strong law of large numbers)
Let X1, X2, ... be a sequence of i.i.d. random variables, each having finite mean. Then

P ( lim
n→∞

Mn = µ) = 1

That is, the averages converge almost surely to the common mean or Mn
a.s→ µ.

This result says that sample averages converge almost surely to µ. Like Theorem 2.2.1, it
says that for larger n the averages Mn are usually close to E(Xi). But it says in addition
that if we wait long enough (i.e., if n is large enough), then eventually the averages will
all be close to µ. In other words, the sample mean is consistent for µ

SECTION 2.4

Convergence in Distribution

There is yet another notion of convergence of a sequence of random variables that is im-
portant in applications of probability and statistics.

Definition 2.4.1. Let X,X1, X2, ... be random variables. Then we say that the sequence
(Xn) converges in distribution to X if for all x ∈ R FXn(x) → FX(x) where F (.) is the
cumulative distribution function, i.e.

lim
n→∞

P (Xn ≤ x) = P (X ≤ x)

and we write Xn
D→ X

Intuitively, (Xn) converges in distribution to X if for large n, the distribution of Xn is
close to that of X . The importance of this, as we will see, is that often the distribution
of Xn is difficult to work with, while that of X is much simpler. With Xn converging in
distribution to X however, we can approximate the distribution of Xn by that of X .

Exemple 2.4.1. Suppose P (Xn = 1) = 1/n, and P (Xn = 0) = 1 − 1/n. Let X = 0 so
that P (X = 0) = 1. Then,

P (Xn ≤ x) =


0 x < 0

1− 1/n 0 ≤ x < 1

1 1 ≤ x

, P (X = x) =

{
0 x < 0

1 0 ≤ x

as n → ∞ As P (Xn ≤ x) → P (X ≤ x) for every x and in particular at all x where
P (X = x) = 0 we have that (Xn) converges in distribution to X . Intuitively, as n→∞,
it is more and more likely that Xn will equal 0.
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Exemple 2.4.2. Suppose P (Xn = 1) = 1/2 + 1/n, and P (Xn = 0) = 1/2 − 1/n.
Suppose further that P (X = 0) = P (X = 1) = 1/2. Then Xn converges in distribution
to X because P (Xn = 1) = 1/2 and P (Xn = 0) = 1/2 as n→∞.

Exemple 2.4.3. Poisson Approximation of the Binomial distribution
Suppose Xn ; Binomial(n, λ/n) and X ; Poisson(λ) . We have seen before that

P (Xn = k) = Ck
n

(
λ

n

)k (
1− λ

n

)n−k
n→∞−→ e−λ

λk

k!

This implies that FXn(x)→ FX(x) Therefore, Xn converges in distribution toX . (Indeed,
this was our original motivation for the Poisson distribution.)

More examples of convergence in distribution are given by the central limit theorem, dis-
cussed in the next section. We first pause to consider the relationship of convergence in
distribution to our previous notions of convergence.

Theorem 2.4.1. If Xn
P→ X, then Xn

D→ X

The converse to this theorem is false. Indeed, the fact that Xn converges in distribution
to X says nothing about the underlying relationship between Xn and X , it says only
something about their distributions. The following example illustrates this.

Exemple 2.4.4. Suppose X,X1, X2, ... are i.i.d., each equal to ∓1 with probability 1/2
each. In this case, P (Xn ≤ x) = P (X ≤ x) for all n and for all x ∈ R, so of course Xn

converges in distribution to X . On the other hand, because X and Xn are independent,

P (|Xn −X| ≥ 2) = 1/2

for all n, which does not go to 0 as n → ∞. Hence, Xn does not converge to X in
probability. So we can have convergence in distribution without having convergence in
probability.

Finally, we note that combining Theorem 2.3.1 with Theorem 2.4.1 reveals the following.

Corollary 2.4.1. If Xn converge to X almost surely, then Xn
D→ X
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2.4.1 The Central Limit Theorem
We now present the central limit theorem, one of the most important results in all of
probability theory. Intuitively, it says that a large sum of i.i.d. random variables, properly
normalized, will always have approximately a normal distribution. This shows that the
normal distribution is extremely fundamental in probability and statistics even though its
density function is complicated and its cumulative distribution function is intractable.
Suppose X1, X2, ... is an i.i.d. sequence of random variables each having finite mean µ
and finite variance σ2 Let Sn = X1 + · · ·+Xn be the sample sum and Mn = Sn/n be the
sample mean. The central limit theorem is concerned with the distribution of the random
variable

Zn
Sn − nµ√

nσ
=
Mn − µ
σ/
√
n

=
√
n

(
Mn − µ

σ

)
where σ =

√
σ2 We know E(Mn) = µ and V ar(Mn) = σ2/

√
n which implies that

E(Zn) = 0 and V ar(Zn) = 1 The variable Zn is thus obtained from the sample mean
(or sample sum) by subtracting its mean and dividing by its standard deviation. This
transformation is referred to as standardizing a random variable, so that it has mean 0 and
variance 1. Therefore, Zn is the standardized version of the sample mean (sample sum.
Note that the distribution of Zn shares two characteristics with the N(0, 1) distribution,
namely, it has mean 0 and variance 1. The central limit theorem shows that there is an
even stronger relationship.

Theorem 2.4.2. (The central limit theorem)
Let X1, X2, ... be i.i.d. with finite mean µ and finite variance σ2. Let Z ; N(0, 1). Then
as n→∞, the sequence Zn converges in distribution to Z, i.e., Zn

D→ Z.

The central limit theorem is so important that we shall restate its conclusions in several
different ways.

Corollary 2.4.2. For each fixed x ∈ R, lim
n→∞

P (Zn ≤ x) = Φ(x) where Φ(x) is the
cumulative distribution function for the standard normal distribution.

We can write this as follows.

Corollary 2.4.3. For each fixed x ∈ R,

lim
n→∞

P (Sn ≤ nµ+ x
√

(n)σ) = Φ(x), lim
n→∞

P (Mn ≤ µ+ xσ)/sqrtn) = Φ(x)
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We note that it is not essential in the central limit theorem to divide by σ, in which case the
theorem asserts instead that (Sn − nµ)/

√
n (or

√
n(Mn − µ) ) converges in distribution

to the N(0, σ2) distribution. That is, the limiting distribution will still be normal but will
have variance σ2 instead of variance 1.
Similarly, instead of dividing by exactly σ , it suffices to divide by any quantity σn, pro-
vided σn

a.s→ σ.

Corollary 2.4.4. If we have the variable Z∗n, when

Z∗n
Sn − nµ√

nσn
=
Mn − µ
σn/
√
n

=
√
n

(
Mn − µ
σn

)
and σn

a.s→ σ, then Z∗n
D→ Z as n→∞ .

To illustrate the central limit theorem, we consider a simulation experiment.

Exemple 2.4.5. (The Central Limit Theorem Illustrated in a Simulation)
Suppose we generate a sample X1, ..., Xn from the Uniform[0, 1] density. Note that the
Uniform[0, 1] density is completely unlike a normal density. An easy calculation shows
that when X ; Uniform[0, 1] then E(X) = 1/2 and V ar(X) = 1/12.
Now suppose we are interested in the distribution of the sample average Mn = Sn/n =
(X1 + · · ·+Xn)/n for various choices of n The central limit theorem tells us that

Zn =
Sn − n/2√

n/12
=
√
n

(
Mn − 1/2√

1/12

)

converges in distribution to an N(0, 1) distribution.

Exemple 2.4.6. For example, suppose X1, X2, ... are i.i.d. random variables, each with
the Poisson(5) distribution. Recall that this implies that E(Xi) = 5and 2 V ar(Xi) =
5.Hence, for each fixed x ∈ R, we have

P (Sn ≤ 5n+ x
√

5n)→ Φ(x)

as n→∞

Exemple 2.4.7. For example, suppose that we have a biased coin, where the probabil-
ity of getting a head on a single toss is θ = 0.6 We will toss the coin n = 1000 times
and then calculate the probability of getting at least 550 heads and no more than 625
heads. If Y denotes the number of heads obtained in the 1000 tosses, we have that
Y ;Binomial(1000, 0.6) so
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E(Y ) = 1000(0.6) = 600

V ar(Y ) = 1000(0.6)(0.4) = 240

Note that we are approximating a discrete distribution by a continuous distribution here.
Reflecting this, a small improvement (which is called the correction for continuity) is often
made, by adding 0.5, i.e., we consider the interval (y − 0.5, y + 0.5) to the non-negative
integer y. Therefore,

P (550 ≤ Y ≤ 625) =P (550 + 0.5 ≤ Y ≤ 625 + 0.5)

= P (
549.5− 600√

240
≤ Y − 600√

240
≤ 625.5− 600√

240

= P (−3.2598 ≤ Y − 600√
240

≤ 1.646)

= Φ(1.65)− Φ(3.26)

Note that it would be impossible to compute this probability using the formulas for the
binomial distribution.

2.4.2 Cumulative Distribution Function of the Standard Normal Dis-
tribution

The (cumulative) distribution function of a random variable X, evaluated at x, is the prob-
ability that X will take a value less than or equal to x.

F (x) = P (X ≤ x)

In the case of a continuous distribution (like the normal distribution) it is the area under
the probability density function (the ’bell curve’) from the negative left (minus infinity) to
x. The shaded area of the curve represents the probability that X is less or equal than x.

We can use the integral notation, then the (cumulative) distribution function can be written
as an integral of its probability density function:

F (x) = P (X ≤ x) =

∫ x

−∞
f(t)dt
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In the case of the normal distribution this integral does not exist in a simple closed formula.
It is computed numerically.
The Standard normal distribution plays an important role

Z ; N(0, 1)

In some books they use a special notation for the (cumulative) distribution function in this
special case of a standard normal distribution:

Φ(z)

We already know that there is a relation between any normal distribution X and the stan-
dard normal distribution Z with mean 0 and standard deviation 1, so

F (x) = Φ(
x− µ
σ

)

the following table represents the standard normal CFD values,
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This can be clarified by a few simple examples.
What is the probability that Z is less than or equal to 1.53? (Φ(1.53)) Look for 1.5 in the
first column, go right to the 0.03 column to find the value 0.9370
What is the probability that Z is less than or equal to -1.53? For negative values, use the
relationship

Φ(−a) = 1− Φ(a)

From the first example, this gives 1 - 0.9370 = 0.0630.
What is the probability that Z is between a and b, for this case we use

P (a ≤ Z ≤ b) = Φ(b)− Φ(a)
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SECTION 2.5

Monte Carlo Approximations

According to the laws of large numbers if X1, X2... is an i.i.d. sequence of random vari-
ables with mean µ, and

Mn =
X1 +X2 + · · ·+Xn

n
,
then for large n we will have Mn ≈ µ.
Suppose now that µ is unknown. Then, as discussed in Section 4.4.2, it is possible to
change perspective and use Mn (for large n) as an estimator or approximation of µ.

Exemple 2.5.1. Suppose we believe a certain medicine lowers blood pressure, but we do
not know by how much. We would like to know the mean amount , by which this medicine
lowers blood pressure. Suppose we observe n patients (chosen at random so they are i.i.d.),
where patient i has blood pressure Bi before taking the medicine and blood pressure Ai
afterwards. Let Xi = BiAi Then

Mn =
1

n

n∑
i=1

(Bi − Ai)

is the average amount of blood pressure decrease. (Note that Bi −Ai may be negative for
some patients, and it is important to also include those negative terms in the sum.) Then
for large n, the value of Mn is a good estimate of E(Xi).

Such estimators can also be used to estimate purely mathematical quantities that do not
involve any experimental data (such as coins or medical patients) but that are too difficult
to compute directly. In this case, such estimators are called Monte Carlo approximations
(named after the gambling casino in the principality of Monaco because they introduce
randomness to solve non-random problems).

Exemple 2.5.2. Suppose we wish to evaluate

I =

∫ 1

0

cos(x)2 sin(x)4dx

This integral cannot easily be solved exactly. But it can be approximately computed using
a Monte Carlo approximation, as follows. We note that

I = E(cos(U)2 sin(U)4

where U ; Uniform[0, 1]. Hence, for large n, the integral I is approximately equal to
Mn = T1+···+Tn

n
,where Ti = cos(Ui)

2 sin(Ui)
4, and whereU1, U2, ... are i.i.d. Uniform[0, 1].
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Chapter 3

Statistical Inference

In this chapter, we begin our discussion of statistical inference. Probability theory is pri-
marily concerned with calculating various quantities associated with a probability model.
This requires that we know what the correct probability model is. In applications, this is
often not the case, and the best we can say is that the correct probability measure to use
is in a set of possible probability measures. We refer to this collection as the statistical
model. So, in a sense, our uncertainty has increased, not only do we have the uncertainty
associated with an outcome or response as described by a probability measure, but now we
are also uncertain about what the probability measure is. Statistical inference is concerned
with making statements or inferences about characteristics of the true underlying proba-
bility measure. Of course, these inferences must be based on some kind of information,
the statistical model makes up part of it. Another important part of the information will be
given by an observed outcome or response, which we refer to as the data. Inferences then
take the form of various statements about the true underlying probability measure from
which the data were obtained.
Inference includes estimation and hypothesis testing which are discussed in this chapter
and the next one.

SECTION 3.1

Statistical model

In a statistical context, we observe the data s, but we are uncertain about P . In such a
situation, we want to construct inferences about P based on this data.
How we should go about making these statistical inferences is probably not at all obvious.
Common to virtually all approaches to statistical inference is the concept of the statistical
model for the data. This takes the form of a set {Pθ, θ ∈ Θ :} of probability measures, one
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of which corresponds to the true unknown probability measure P that produced the data
s In other words, we are asserting that there is a random mechanism generating s and we
know that the corresponding probability measure P is one of the probability measures in
{Pθ, θ ∈ Θ :}.
The statistical model {Pθ, θ ∈ Θ :} : corresponds to the information a statistician brings
to the application about what the true probability measure is, or at least what one is willing
to assume about it. The variable θ is called the parameter of the model, and the set Θ is
called the parameter space. Typically, we use models where θ ∈ Θ indexes the probability
measures in the model, i.e., Pθ1 = Pθ2 if and only if θ1 = θ2 If the probability measures
Pθ can all be presented via probability functions or density functions fθ
From the definition of a statistical model, we see that there is a unique value θ ∈ Θ such
that Pθ is the true probability measure. We refer to this value as the true parameter value.
It is obviously equivalent to talk about making inferences about the true parameter value
rather than the true probability measure, i.e., an inference about the true value of θ is at
once an inference about the true probability distribution. So, for example, we may wish to
estimate the true value of θ.
There are two main approaches to estimation; point estimation and confidence interval
estimation. The first one gives an approximate value for the unknown parameter, while the
second gives a an interval that likely contains the value of the parameter.

SECTION 3.2

Point estimation

Point estimation method is based on the notion of estimators, this notion is defined by the
following concepts.

Definition 3.2.1. We call a statistic any function of the data in a sample (X1, ..., Xn).
which is denoted by Tn(X1, ..., Xn). A statistic does not depend on unknown parameters.

Definition 3.2.2. Let X be a random variable whose distribution depends on a parameter
θ, and let X1, X2, . . . , Xn be a size n sampling of X . A point estimator of θ is a statistic
of the form

θ̂ = T (X1, X2, . . . , Xn).

In an application, we want to know how reliable an estimator θ̂ is. or we might have to
choose between two estimators of the same parameter. This leads us to following concepts.

Definition 3.2.3. The bias in an estimator θ̂ of θ is given by E(θ̂) − θ whenever E(θ̂)
exists. When the bias in an estimator θ̂ is 0, we call θ̂ an unbiased estimator of θ, i.e., T is
unbiased whenever E(θ̂) = θ.
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Unbiasedness tells us that, in a sense, the sampling distribution of the estimator is centered
on the true value θ.

Definition 3.2.4. The mean squared error (MSE) of the estimator θ̂ is given byMSE(θ̂) =
E(θ̂ − θ)2).

Clearly, the smaller MSE(θ̂) is, the more concentrated the sampling distribution of θ̂ is
about the value θ. Looking at MSE(θ̂) as a function of gives us some idea of how reliable
T is as an estimate of the true value of θ.
The following result gives an important identity for the MSE.

Theorem 3.2.1. The mean squared error (MSE) is also expressed by

MSE(θ̂) = V ar(θ̂) + (E(θ̂)− θ)2

Note that when the bias in an estimator is 0, then the MSE is just the variance and

Sd(θ̂) =

√
V ar(θ̂)

is an estimate of the standard deviation of θ̂ and is referred to as the standard error of the
estimate. As a principle of good statistical practice, whenever we quote an estimate of
a quantity, we should also provide its standard error at least when we have an unbiased
estimator, as this tells us something about the accuracy of the estimate.

Definition 3.2.5. An estimator is said to be convergent (consistent) if the sequence (θ̂n)
converges in probability to θ :

∀ε > 0, P (|θ̂n − θ| > ε) −→
n→∞

0.

A Strong convergent (consistent) estimator is one where convergence is almost sure.
If the variance of an estimator tends to zero then, this estimator is consistent. this condition
is sufficient not necessary.

There are several methods for determining point estimators, the method of moments, the
maximum likelihood method and other methods.

3.2.1 Method of moments
In short, the method of moments involves equating sample moments with theoretical mo-
ments. So, let’s start by making sure we recall the definitions of theoretical moments, as
well as learn the definitions of sample moments.
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Definition 3.2.6. Moments(Review)
Let X be a random variable. Then, The kth moment of X is:

E(Xk)

and the kth central moment of X is:

E[(X − E(X))k]

Usually, we are interested in the first moment of X , µ = E(X), and the second central
moment of X , V ar(X) = E[(X − µ)2].

Definition 3.2.7. Sample moments
Let X be a random variable. Let X1, ..., Xn be iid realizations (samples) from X . Then,
The kth sample moment of X is:

1

n

n∑
i=1

Xk
i

and the kth central sample moment of X is:

1

n

n∑
i=1

(Xi − X̄)k

where X̄ is the first sample moment.
For example, the first sample moment is just the sample mean, and the second central
sample moment is the sample variance.

Common estimators are the sample mean and sample variance which are used to estimate
the unknown population mean and variance.

Theorem 3.2.2. (Estimation of µ)
Suppose that the mean µ is unknown. The method of moments estimator of µ based on
(Xn) is the sample mean

µ̂ =
1

n

n∑
i=1

Xi = X̄

µ̂ is unbiased and consistent estimator.

Proof. X̄ is unbiased because :
E(X̄) = E(X̄) = E

(
1
n

∑n
i=1Xi

)
= 1

n

∑n
i=1E(Xi) = E(Xi) = µ.
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X̄ is consistent because :
V ar((µ̂) = V ar(X̄) = σ2/n.

Estimating the variance of the distribution, on the other hand, depends on whether the
distribution mean µ is known or unknown. First, we will consider the case when the mean
in known.

Theorem 3.2.3. Suppose that the mean µ is known and the variance σ2 unknown, the
method of moments estimator of σ2 based on (Xn) is

T =
1

n

n∑
i=1

(Xi − µ)2

T is is unbiased and consistent estimator.

Proof. T is unbiased because :
E(T ) = E

(
1
n

∑n
i=1(Xi − µ)2

)
= 1

n

∑n
i=1 V ar(Xi) = σ2.

T is consistent because :
V ar(T ) = V ar

(
1
n

∑n
i=1(Xi − µ)2

)
= 1

n2

∑n
i=1 V ar[(Xi − µ)2]2 = 1

n
[E((Xi − µ)4)− E((Xi − µ)2)2].

Secondly, we will consider the more realistic case when the mean in also unknown.

Theorem 3.2.4. Suppose that the mean µ and the variance σ2 are both unknown, the
method of moments estimator of σ2 based on Xn is

S2 =
1

n

n∑
i=1

(Xi − X̄)2

S2 is biased and consistent estimator.
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Proof.

E(S2) = E

(
1

n

n∑
i=1

(Xi − X̄)2

)
=

1

n

n∑
i=1

E(Xi − X̄)2

=
1

n

n∑
i=1

E(X2
i )− E(X̄2)

=
1

n
(n(µ2 + σ2))− (µ2 +

σ2

n
) =

n− 1

n
σ2

since E(S2)→ σ2 we call S2 asymptotically unbiased.

V ar(S2) =
1

n
(σ4 − σ4)− 2

n2
(σ4 − 2σ4) +

1

n3
(σ4 − 3σ4)

where σ4 = E((X − µ)4), so S2 is consistent.

To obtain unbiased estimator of σ2 while µ is unknown we consider the following estimator

Theorem 3.2.5.

S∗2 =
n

n− 1
S2 =

1

n− 1

n∑
i=1

(Xi − X̄)2

is an unbiased and consistent estimator of σ2

Proof.

E(S∗2) = E

(
n

n− 1
S2

)
=

n

n− 1
E(S2) = σ2,

V ar(S∗2) =
1

n
(σ4 −

n− 3

n− 1
σ4),

so so S∗2 is unbiased and consistent.

Exemple 3.2.1. Let X1, X2, ..., Xn be (iid) Bernoulli random variables with parameter θ.
We find the method of moments estimator of θ, the first theoretical moment is E(Xi) = θ
We have just one parameter for which we are trying to derive the method of moments
estimator. Therefore, we need just one equation. Equating the first theoretical moment
with the corresponding sample moment, we get:
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θ =
1

n

n∑
i=1

Xi

Now, we just have to solve for θ. In this case, the equation is already solved, so

θ̂M =
1

n

n∑
i=1

Xi

Exemple 3.2.2. Let X1, X2, ..., Xn be iid samples from X ; Exp(λ). The method of
moment estimator of λ ). We then set the first true moment to the first sample moment as
follows (recall that E(X) = 1

λ

E[X] =
1

λ
=

1

n

n∑
i=1

Xi

Solving for λ (just taking inverse), we get:

λ̂M =
1

1
n

∑n
i=1Xi

=
1

X̄

3.2.2 Maximum of likelihood estimation
Given a parameter θ of a population to be estimated. We introduce the following estimator.

Definition 3.2.8. Given x = (x1, x2, . . . , xn) a realization of a sampleX = (X1, X2, . . . , Xn)
of n random variables, the function L(θ, x) is given by

L(θ, x) =

{∏n
i=1 P (Xi, θ) if X is discrete∏n
i=1 f(xi, θ) if X is continuous

such that the function L of θ for x fixed, is called the Likelihood function.
The method of maximum likelihood (ML) consists in choosing as an estimator of θ, the
particular value of θ which maximises the likelihood function L(θ, x).
this estimator θ̂ML is the solution to the equation:

∂L(θ, x)

∂θ
= 0

or
∂l(θ, x)

∂θ
= 0

where l(θ, x) = lnL(θ, x).
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Exemple 3.2.3. Suppose that X = (X1, X2, ..., Xn) represents the outcomes of n in-
dependent Bernoulli trials, each with success probability θ. The likelihood for θ based
on X is defined as the joint probability distribution of X = (X1, X2, ..., Xn). Since
X = (X1, X2, ..., Xn) are iid random variables, the joint distribution is

L(θ, x) =
n∏
i=1

P (xi, θ) =
n∏
i=1

θxi(1− θ)1−xi

= θx1(1− θ)1−x1 · · · θxn(1− θ)1−xn

= θ
∑n

i=1 xi(1− θ)n−
∑n

i=1 xi

just reflects the probability mass function of the Bernoulli distribution.
For the log-likelihood,

l(θ, x) = lnL(θ, x) =

(
n∑
i=1

xi

)
ln θ+

(
n−

n∑
i=1

xi

)
ln(1−θ) = nX̄ ln θ+n(1−X̄) ln(1−θ)

Differentiating and setting it up to zero,

∂l(θ, x)

∂θ
= n

(
X̄

θ
− 1− X̄

1− θ

)
= n

(
X̄(1− θ)− θ(1− X̄)

θ(1− θ)

)
= 0

Therefore θ̂ = X̄

Exemple 3.2.4. Let X1, . . . , Xn be a random sample of size n drawn from a population
distributed according to an exponential law Exp(λ), i.e.

f(x, λ =

{
λ exp(−λx) ifx ≥ 0

0 ifx < 0

Estimate the parameter λ of the distribution, using the likelihood method.

L(λ, x) =
n∏
i=1

f(xi, λ) = λ exp(−λx1)× λ exp(−λx2)× · · · × λ exp(−λxn)

= λn exp(−λ
n∑
i=1

xi)

l(λ, x) = lnL(λ) = n lnλ− λ
n∑
i=1

xi
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and
∂

∂λ
l(λ, x) =

n

λ
−∑n

i=1 xi = 0⇒ λ =
n∑n
i=1 xi

or we deduce that the M.V. estimator of λ is λ̂ =
n∑n
i=1 xi

=
1

X̄
.

SECTION 3.3

Confidence interval estimation

Let α ∈]0, 1[ be a risk level set by the statistician, A confidence region of θ of confidence
level 1 − α is a set (depending on on the observation but not on the unknown parameter
θ), C(X) ⊆ Θ, such that

∀θ ∈ Θ, P (θ ∈ C(X)) = 1− α
The usual values of α are 1%, 5% or 10%. In the one-dimensional case, most of the time,
a confidence region is written in the form of an interval. A confidence interval with a 95%
confidence level has a probability of at least 0.95 of containing the true unknown value θ.
The estimation by interval of an unknown parameter θ is the construction of an interval
[a, b]., we have :

P ([a ≤ θ ≤ b]) = 1− α
such that a et b called confidence limits.
in the following section, we considerX a random variable with normal distributionN(µ, σ2).,
otherwise using the central limit theorem we get the same results when n is large (n ≥ 30).

3.3.1 Classic examples of interval estimation

The parameters to be estimated are the mean µ and the variance σ2.
Starting with the mean we can distinguish two cases can be distinguished, depending on
whether the variance is known or estimated.

Confidence interval of the mean

The unbiased estimator of the mean µ is the statistic

X̄ =
1

n

n∑
i=1

Xi,

which follows the normal distribution N((µ, σ
2

n
),
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Case 1: the variance σ2 is known
Given a risk level α, we construct a probability interval for the sample mean X̄ a proba-
bility interval:

P (−Zα/2 ≤
√
n
X̄ − µ
σ

≤ Zα/2) = 1− α

P (−Zα/2
σ√
n
≤ X̄ − µ ≤ Zα/2

σ√
n

) = 1− α

P (−X̄ − Zα/2
σ√
n
≤ −µ ≤ −X̄ + Zα/2

σ√
n

) = 1− α

P (X̄ − Zα/2
σ√
n
≤ µ ≤ X̄ + Zα/2

σ√
n

) = 1− α

Knowing that
√
n

(
X̄ − µ
σ

)
; N(0, 1) : the value Zα/2 is read from the standard normal

table N(0, 1) such that Φ(Zα/2) = 1− α

2
. i.e., Zα/2 = Φ−1(1− α

2
).

ICα(µ) =

[
X̄ − Zα/2

σ√
n
, X̄ + Zα/2

σ√
n

]
Exemple 3.3.1. The mass X of containers of a certain product is a random variable with
mean µ and standard deviation 0.3 grams. A random sample of 100 containers is chosen
and gives a mean of 49.7 grams.
- Compute a confidence interval for µ with a confidence level of 1− α = 0.95.
Ans: Since the Variance σ2 is known and the size n is large, the interval is of the form

µ ∈ X̄ ± Zα/2
σ√
n

1− α = 0.95⇒ Zα/2 = Z0.025 = 1.96. where :

µ ∈ 49.7± 1.96× 0.3√
100

= [49.64, 49.76]

Case 2 : the variance σ2 is estimated

The unbiased estimator of the mean σ2 is

S∗2 =
n

n− 1
S̄2 =

1

n− 1

n∑
i=1

(Xi − X̄)2
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When σ2 is unknown, a confidence interval at the 1−α level of µ the same as before while
replacing σ of its estimate.

ICα(µ) =

[
X̄ − Zα/2

S∗√
n
, X̄ + Zα/2

S∗√
n

]
where the value Zα/2 is read from the standard normal table N(0, 1) .

Exemple 3.3.2. The concentration of a solution of fluorescent was measured 90 times. The
sample mean X̄ = 4.38mg|l and standard deviation S∗ = 0.08mg|l were observed.
- Give a confidence interval for the true concentration of the solution, at the 0.95 and 0.99
confidence level.
Ans:
Since the variance σ2 is unknown and the size n is large, the interval is of the form,

µ ∈ X̄ ± Zα/2
S∗√
n

• 1− α = 0.95⇒ Zα/2 = Z0.025 = 1.96

µ ∈ [4.38− 1.96
0.08√

90
; 4.38 + 1.96

0.08√
90

]

µ ∈ [4.363; 4.397]

• 1− α = 0.99⇒ Zα/2 = Z0.005 = 2.5758

µ ∈ [4.38− 2.5758
0.08√

90
; 4.38 + 2.5758

0.08√
90

]

µ ∈ [4.358, 4.402].
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z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879

0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389

1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319

1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767

2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936

2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986

3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998

Standard Normal Cumulative Probability Table

Cumulative probabilities for POSITIVE z-values are shown in the following table:



Confidence interval of the variance

Case 1 : the mean µ is known

The best estimator of the variance is the statistic

T =
1

n

n∑
i=1

(Xi − µ)2.

The random variable χ2(n) = nT
σ2 follows a chi-square distribution with n degrees of

freedom.
A probability interval for the random variable χ2(n) is

P

(
χ2
1−α/2,n ≤

nT

σ2
≤ χ2

α/2,n

)
= 1− α

P

(
nT

χ2
α/2,n

≤ σ2 ≤ nT

χ2
1−α/2,n

)
= 1− α

(the limits of the interval are read from the table of the chi-square distribution)

ICα(σ2) =

[
nT

χ2
α/2,n

,
nT

χ2
1−α/2,n

]
Exemple 3.3.3. Let X be a random variable following the normal distribution N(40, σ2).
To estimate the variance, we take a sample of size n = 25 and calculate the value of the
statistic T (defined before) for this sample. The result is t = 12.
- Give a confidence interval of σ2 for confidence level: 1− α = 0.95.

IC0.05(σ
2) =

[
25× 12

40.65
,
25× 12

13.12

]
= [7.381, 22.866]

Case 2 : the mean µ is estimated

The unbiased estimator of the variance is the statistic

S∗2 =
1

n− 1

n∑
i=1

(Xi − X̄)2.
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The random variable χ2
n−1 = (n−1)S∗2

σ2 follows a chi-square distribution with (n − 1) de-
grees of freedom.

ICα(σ2) =

[
(n− 1)S∗2

χ2
α/2,n−1

,
(n− 1)S∗2

χ2
α/2,n−1

]
Here is the table of the χ2 distribution
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χ2
α,ν

f

α

Percentage Points χ2
α,ν of the χ2 distributionTable 1:

α 0.995 0.990 0.975 0.950 0.900 0.500 0.100 0.050 0.025 0.010 0.005
v
1 0.00 0.00 0.00 0.00 0.02 0.45 2.71 3.84 5.02 6.63 7.88
2 0.01 0.02 0.05 0.01 0.21 1.39 4.61 5.99 7.38 9.21 10.60
3 0.07 0.11 0.22 0.35 0.58 2.37 6.25 7.81 9.35 11.34 12.28
4 0.21 0.30 0.48 0.71 1.06 3.36 7.78 9.49 11.14 13.28 14.86
5 0.41 0.55 0.83 1.15 1.61 4.35 9.24 11.07 12.83 15.09 16.75
6 0.68 0.87 1.24 1.64 2.20 5.35 10.65 12.59 14.45 16.81 18.55
7 0.99 1.24 1.69 2.17 2.83 6.35 12.02 14.07 16.01 18.48 20.28
8 1.34 1.65 2.18 2.73 3.49 7.34 13.36 15.51 17.53 20.09 21.96
9 1.73 2.09 2.70 3.33 4.17 8.34 14.68 16.92 19.02 21.67 23.59
10 2.16 2.56 3.25 3.94 4.87 9.34 15.99 18.31 20.48 23.21 25.19
11 2.60 3.05 3.82 4.57 5.58 10.34 17.28 19.68 21.92 24.72 26.76
12 3.07 3.57 4.40 5.23 6.30 11.34 18.55 21.03 23.34 26.22 28.30
13 3.57 4.11 5.01 5.89 7.04 12.34 19.81 22.36 24.74 27.69 29.82
14 4.07 4.66 5.63 6.57 7.79 13.34 21.06 23.68 26.12 29.14 31.32
15 4.60 5.23 6.27 7.26 8.55 14.34 22.31 25.00 27.49 30.58 32.80
16 5.14 5.81 6.91 7.96 9.31 15.34 23.54 26.30 28.85 31.00 34.27
17 5.70 6.41 7.56 8.67 10.09 16.34 24.77 27.59 30.19 33.41 35.72
18 6.26 7.01 8.23 9.39 10.87 17.34 25.99 28.87 31.53 34.81 37.16
19 6.84 7.63 8.91 10.12 11.65 18.34 27.20 30.14 32.85 36.19 38.58
20 7.43 8.26 9.59 10.85 12.44 19.34 28.41 31.41 34.17 37.57 40.00
21 8.03 8.90 10.28 11.59 13.24 20.34 29.62 32.67 35.48 38.93 41.40
22 8.64 9.54 10.98 12.34 14.04 21.34 30.81 33.92 36.78 40.29 42.80
23 9.26 10.20 11.69 13.09 14.85 22.34 32.01 35.17 38.08 41.64 44.18
24 9.89 10.86 12.40 13.85 15.66 23.34 33.20 36.42 39.36 42.98 45.56
25 10.52 11.52 13.12 14.61 16.47 24.34 34.28 37.65 40.65 44.31 46.93
26 11.16 12.20 13.84 15.38 17.29 25.34 35.56 38.89 41.92 45.64 48.29
27 11.81 12.88 14.57 16.15 18.11 26.34 36.74 40.11 43.19 46.96 49.65
28 12.46 13.57 15.31 16.93 18.94 27.34 37.92 41.34 44.46 48.28 50.99
29 13.12 14.26 16.05 17.71 19.77 28.34 39.09 42.56 45.72 49.59 52.34
30 13.79 14.95 16.79 18.49 20.60 29.34 40.26 43.77 46.98 50.89 53.67
40 20.71 22.16 24.43 26.51 29.05 39.34 51.81 55.76 59.34 63.69 66.77
50 27.99 29.71 32.36 34.76 37.69 49.33 63.17 67.50 71.42 76.15 79.49
60 35.53 37.48 40.48 43.19 46.46 59.33 74.40 79.08 83.30 88.38 91.95
70 43.28 45.44 48.76 51.74 55.33 69.33 85.53 90.53 95.02 100.42 104.22
80 51.17 53.54 57.15 60.39 64.28 79.33 96.58 101.88 106.63 112.33 116.32
90 59.20 61.75 65.65 69.13 73.29 89.33 107.57 113.14 118.14 124.12 128.30
100 67.33 70.06 74.22 77.93 82.36 99.33 118.50 124.34 129.56 135.81 140.17

22 HELM (2008):
Workbook 40: Sampling Distributions and Estimation



Chapter 4

Statistical tests

Given a hypothesis H0 concerning a population. On the basis of the results of samples
taken from this population, we are led to accept or reject the hypothesisH0. These decision
rules are known as statistical tests.
H0 denotes the null hypothesis and by H1 we note the hypothesis called alternative hy-
pothesis.
The final result of a statistical test is :
A case when H0 is true and H1 is false otherwise when H0 is false and H1 is true.

SECTION 4.1

Homogeneity tests

Using a sample of size n1 and a sample of size n2 which are independent (can be of the
same population or different ones), the test makes it possible to decide :{

H0 : θ0 = θ1

H1 : θ0 6= θ1

where θ0 et θ1 are the two values of the same parameter.

4.1.1 Comparison of two means (Test of Student)

Let X and Y be two normal independent random variables (X ; N(µ1, σ
2
1) and Y ;

N(µ2, σ
2
2)). We construct two samples of the same distribution asX ,Y : {X1, X2, ..., Xn1}

and {Y1, Y2, ..., Yn2} which are independent.
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We want to decide whether the means µ1 and µ2 are equals or significantly different, to
obtain this decision we use the test of Student.

Case one : known variance

We declare the null hypothesis with risk level α,{
H0 : µ1 = µ2

H1 : µ1 6= µ2

We know that X̄ ; N(µ1,
σ2
1

n1
) and Ȳ ; N(µ2,

σ2
2

n2
), so the decisive variable:

u =
X̄ − Ȳ√
σ2
1

n1
+

σ2
1

n2

; N(0, 1)

• We accept H0 (We reject H1), i.e., there is no significant difference between the
means of two samples if:

u ∈ [−Zα/2, Zα/2],

the value Zα/2 is read from the standard normal table like we have seen before:
Zα/2 = φ−1(1− α

2
).

• We reject H0 (We accept H1), i.e., there is a significant difference between the two
means if

u /∈ [−Zα/2, Zα/2]

Exemple 4.1.1. Let X and Y be two normal random variables with standard deviation
2.8 and 3.1 respectively, a sample (X1, X2..) of size 120 with mean weight 48.53g and a
sample (Y1, Y2, ...) of size 270 of mean 50.08g are taken.
At the 5% risk level (risk of error), is there a difference between the mean weights of the
packets?
Ans:

Sample 1 Sample 2
n1 = 120 n2 = 270
X̄ = 48.53 Ȳ = 50.08
σ1 = 2.8 σ2 = 3.1
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This is the test H0 : µ1 = µ2

u =
48.53− 50.08√

(2.8)2

120
+ (3.1)2

270

= −4.88

Zα/2 = φ−1(1− 0.025)

= φ−1(0.975)

from the standard normal table we find Zα/2 = 1.96, clearly we have u /∈ [−1.96, 1.96] so
we reject H0 (accept H1), which means µ1 6= µ2

case two: estimated variance

(a): n1 and n2 are greater than 30

In this case we replace σ1 and σ2 by its estimators, we find

u =
X̄ − Ȳ√
S∗2
1

n1
+

S∗2
2

n2

where S∗21 = 1
n1−1

∑n1

i=1(Xi − X̄)2 and S∗21 = 1
n2−1

∑n2

i=1(Yi − Ȳ )2.
we accept H0 when u ∈ [−Zα/2, Zα/2] and reject it when u /∈ [−Zα/2, Zα/2].

(b): n1 and n2 are lesser than 30 and σ1 = σ2

Here we find the common estimator of the variance:

S2
c =

(n1 − 1)S∗21 + (n2 − 1)S∗22
n1 + n2 − 2

so we obtain

u =
X̄ − Ȳ

Sc
√

1
n1

+ 1
n2

when u follows student distribution with n1+n2−2 degree of liberty u; T (n1+n2−2),
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We accept H0 if u ∈ [−tα/2,k, tα/2,k], the value tα/2,k is read in Student table with k =
n1 + n2 − 2 degree of liberty.
(c): n1 and n2 are lesser than 30 and σ1 6= σ2
In this case we estimate both variances by its estimators we obtain

u =
X̄ − Ȳ√
S∗2
1

n1
+

S∗2
2

n2

; T (v)

where v =

S∗2
1

n1
+

S∗2
2

n2

(n1−1)S∗4
1

n4
1

+
(n2−1)S∗4

2

n4
2

We accept H0 if u ∈ [−tα/2,v, tα/2,v], the value tα/2,v is read in Student table with v degree
of liberty.

Exemple 4.1.2. The weight of a medicine packaged in boxes is distributed according to a
normal distribution N(µ, σ2). Two samples of respective sizes n1 = 12 and n2 = 18 have
means 22.235 g and 21.988 g and standard deviation 0.18 g and 0.23 g respectively.
is there difference between the mean weights of the two samples for a risk level 5%?
Ans

Sample 1 Sample 2
n1 = 12 n2 = 18

X̄ = 22.235 Ȳ = 21.988
S∗1 = 0.18 S∗2 = 0.23

We have the same value of σ2, we find the common estimator

Sc =

√
(12− 1)(0.18)2 + (18− 1)(0.23)2

12 + 18− 2
= 0.21177

then,

u =
22.235 + 21.988

0.21177
√

1
12

+ 1
18

= 3.129

In the Student’s table, we find tα/2,n1+n2−2 = t0.025,28 = 2.048
we can see that u /∈ [−2.048, 2.048] so we reject H0.
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Critical Values for Student’s t-Distribution.
Upper Tail Probability: Pr(T > t)

df 0.2 0.1 0.05 0.04 0.03 0.025 0.02 0.01 0.005 0.0005

1 1.376 3.078 6.314 7.916 10.579 12.706 15.895 31.821 63.657 636.619
2 1.061 1.886 2.920 3.320 3.896 4.303 4.849 6.965 9.925 31.599
3 0.978 1.638 2.353 2.605 2.951 3.182 3.482 4.541 5.841 12.924
4 0.941 1.533 2.132 2.333 2.601 2.776 2.999 3.747 4.604 8.610
5 0.920 1.476 2.015 2.191 2.422 2.571 2.757 3.365 4.032 6.869
6 0.906 1.440 1.943 2.104 2.313 2.447 2.612 3.143 3.707 5.959
7 0.896 1.415 1.895 2.046 2.241 2.365 2.517 2.998 3.499 5.408
8 0.889 1.397 1.860 2.004 2.189 2.306 2.449 2.896 3.355 5.041
9 0.883 1.383 1.833 1.973 2.150 2.262 2.398 2.821 3.250 4.781

10 0.879 1.372 1.812 1.948 2.120 2.228 2.359 2.764 3.169 4.587

11 0.876 1.363 1.796 1.928 2.096 2.201 2.328 2.718 3.106 4.437
12 0.873 1.356 1.782 1.912 2.076 2.179 2.303 2.681 3.055 4.318
13 0.870 1.350 1.771 1.899 2.060 2.160 2.282 2.650 3.012 4.221
14 0.868 1.345 1.761 1.887 2.046 2.145 2.264 2.624 2.977 4.140
15 0.866 1.341 1.753 1.878 2.034 2.131 2.249 2.602 2.947 4.073
16 0.865 1.337 1.746 1.869 2.024 2.120 2.235 2.583 2.921 4.015
17 0.863 1.333 1.740 1.862 2.015 2.110 2.224 2.567 2.898 3.965
18 0.862 1.330 1.734 1.855 2.007 2.101 2.214 2.552 2.878 3.922
19 0.861 1.328 1.729 1.850 2.000 2.093 2.205 2.539 2.861 3.883
20 0.860 1.325 1.725 1.844 1.994 2.086 2.197 2.528 2.845 3.850

21 0.859 1.323 1.721 1.840 1.988 2.080 2.189 2.518 2.831 3.819
22 0.858 1.321 1.717 1.835 1.983 2.074 2.183 2.508 2.819 3.792
23 0.858 1.319 1.714 1.832 1.978 2.069 2.177 2.500 2.807 3.768
24 0.857 1.318 1.711 1.828 1.974 2.064 2.172 2.492 2.797 3.745
25 0.856 1.316 1.708 1.825 1.970 2.060 2.167 2.485 2.787 3.725
26 0.856 1.315 1.706 1.822 1.967 2.056 2.162 2.479 2.779 3.707
27 0.855 1.314 1.703 1.819 1.963 2.052 2.158 2.473 2.771 3.690
28 0.855 1.313 1.701 1.817 1.960 2.048 2.154 2.467 2.763 3.674
29 0.854 1.311 1.699 1.814 1.957 2.045 2.150 2.462 2.756 3.659
30 0.854 1.310 1.697 1.812 1.955 2.042 2.147 2.457 2.750 3.646

31 0.853 1.309 1.696 1.810 1.952 2.040 2.144 2.453 2.744 3.633
32 0.853 1.309 1.694 1.808 1.950 2.037 2.141 2.449 2.738 3.622
33 0.853 1.308 1.692 1.806 1.948 2.035 2.138 2.445 2.733 3.611
34 0.852 1.307 1.691 1.805 1.946 2.032 2.136 2.441 2.728 3.601
35 0.852 1.306 1.690 1.803 1.944 2.030 2.133 2.438 2.724 3.591
36 0.852 1.306 1.688 1.802 1.942 2.028 2.131 2.434 2.719 3.582
37 0.851 1.305 1.687 1.800 1.940 2.026 2.129 2.431 2.715 3.574
38 0.851 1.304 1.686 1.799 1.939 2.024 2.127 2.429 2.712 3.566
39 0.851 1.304 1.685 1.798 1.937 2.023 2.125 2.426 2.708 3.558
40 0.851 1.303 1.684 1.796 1.936 2.021 2.123 2.423 2.704 3.551

41 0.850 1.303 1.683 1.795 1.934 2.020 2.121 2.421 2.701 3.544
42 0.850 1.302 1.682 1.794 1.933 2.018 2.120 2.418 2.698 3.538
43 0.850 1.302 1.681 1.793 1.932 2.017 2.118 2.416 2.695 3.532
44 0.850 1.301 1.680 1.792 1.931 2.015 2.116 2.414 2.692 3.526
45 0.850 1.301 1.679 1.791 1.929 2.014 2.115 2.412 2.690 3.520
46 0.850 1.300 1.679 1.790 1.928 2.013 2.114 2.410 2.687 3.515
47 0.849 1.300 1.678 1.789 1.927 2.012 2.112 2.408 2.685 3.510
48 0.849 1.299 1.677 1.789 1.926 2.011 2.111 2.407 2.682 3.505
49 0.849 1.299 1.677 1.788 1.925 2.010 2.110 2.405 2.680 3.500
50 0.849 1.299 1.676 1.787 1.924 2.009 2.109 2.403 2.678 3.496

60 0.848 1.296 1.671 1.781 1.917 2.000 2.099 2.390 2.660 3.460
70 0.847 1.294 1.667 1.776 1.912 1.994 2.093 2.381 2.648 3.435
80 0.846 1.292 1.664 1.773 1.908 1.990 2.088 2.374 2.639 3.416
90 0.846 1.291 1.662 1.771 1.905 1.987 2.084 2.368 2.632 3.402

100 0.845 1.290 1.660 1.769 1.902 1.984 2.081 2.364 2.626 3.390

120 0.845 1.289 1.658 1.766 1.899 1.980 2.076 2.358 2.617 3.373
140 0.844 1.288 1.656 1.763 1.896 1.977 2.073 2.353 2.611 3.361
180 0.844 1.286 1.653 1.761 1.893 1.973 2.069 2.347 2.603 3.345
200 0.843 1.286 1.653 1.760 1.892 1.972 2.067 2.345 2.601 3.340
500 0.842 1.283 1.648 1.754 1.885 1.965 2.059 2.334 2.586 3.310

1000 0.842 1.282 1.646 1.752 1.883 1.962 2.056 2.330 2.581 3.300
∞ 0.842 1.282 1.645 1.751 1.881 1.960 2.054 2.326 2.576 3.291

60% 80% 90% 92% 94% 95% 96% 98% 99% 99.9%

Confidence Level

Note: t(∞)α/2 = Zα/2 in our notation.



4.1.2 Comparison of two variances (Test of Fisher)
Let {X1, X2, ..., Xn1} and {Y1, Y2, ..., Yn2} be two independent samples of size n1 and n2

derived from normal distribution N(µ1, σ
2
1) and N(µ2, σ

2
2) respectively, the null hypothe-

sis H0 : σ2
1 = σ2

2 (H1 : σ2
1 6= σ2

2).

Case one: known mean

Under H0, the decisive variable :

u =


T1
T2

if T1 > T2

T2
T1

if T2 > T1

where,

T1 =
1

n1

n1∑
i=1

(X − µ1)
2 T2 =

1

n2

n2∑
i=1

(Y − µ2)
2

and u follows Fisher Snedecor distribution of n1 and n2 degree of liberty (u ; F (n1, n2)
), which is the quotient of two variables of chi-square distribution of n1 and n2 degree of
liberty respectively.
We accept H0 (reject H1) if u < Fα,(n1,n2) and we reject it (accept H1) otherwise, i.e.,
u > Fα,(n1,n2)

We read the value Fα,(n1,n2) from the Fisher Snedecor distribution table.

Case one: estimated mean

In this case we use the estimator S∗2 instead of T , then, the decisive distribution is

u =


S∗21
S∗22

if S∗21 > S∗22

S∗22
S∗21

if S∗22 > S∗21

where u; F (n1 − 1, n2 − 1)
then we accept H0 (reject H1) if u < Fα,(n1−1,n2−1) and we reject it (accept H1) otherwise
(u > Fα,(n1−1,n2−1))
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Exemple 4.1.3. We consider two independent samples of size 11 and 9 respectively, we
find the variance as 114.96 and 23.78. test H0 : σ2

1 = σ2
2 at risk level 5%

Ans :
we have u; F (10, 8),

u =
S∗21
S∗22

=
114.96

23.78
= 4.834

F0.05,(10,8) = 3.35. We reject H0 since u > F0.05,(10,8).

56



F Distribution Table 1 

 
d.f.N. = degrees of freedom in numerator 
d.f.D. = degrees of freedom in denominator 
 

 α = 0.005 
 d.f.N. 
d.f.D. 1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120 ∞ 

1 16211 20000 21615 22500 23056 23437 23715 23925 24091 24224 24426 24630 24836 24940 25044 25148 25253 25359 25465 
2 198.5 199.0 199.2 199.2 199.3 199.3 199.4 199.4 199.4 199.4 199.4 199.4 199.4 199.5 199.5 199.5 199.5 199.5 199.5 
3 55.55 49.80 47.47 46.19 45.39 44.84 44.43 44.13 43.88 43.69 43.39 43.08 42.78 42.62 42.47 42.31 42.15 41.99 41.83 
4 31.33 26.28 24.26 23.15 22.46 21.97 21.62 21.35 21.14 20.97 20.70 20.44 20.17 20.03 19.89 19.75 19.61 19.47 19.32 
5 22.78 18.31 16.53 15.56 14.94 14.51 14.20 13.96 13.77 13.62 13.38 13.15 12.90 12.78 12.66 12.53 12.40 12.27 12.14 
6 18.63 14.54 12.92 12.03 11.46 11.07 10.79 10.57 10.39 10.25 10.03 9.81 9.59 9.47 9.36 9.24 9.12 9.00 8.88 
7 16.24 12.40 10.88 10.05 9.52 9.16 8.89 8.68 8.51 8.38 8.18 7.97 7.75 7.65 7.53 7.42 7.31 7.19 7.08 
8 14.69 11.04 9.60 8.81 8.30 7.95 7.69 7.50 7.34 7.21 7.01 6.81 6.61 6.50 6.40 6.29 6.18 6.06 5.95 
9 13.61 10.11 8.72 7.96 7.47 7.13 6.88 6.69 6.54 6.42 6.23 6.03 5.83 5.73 5.62 5.52 5.41 5.30 5.19 

10 12.83 9.43 8.08 7.34 6.87 6.54 6.30 6.12 5.97 5.85 5.66 5.47 5.27 5.17 5.07 4.97 4.86 4.75 4.64 
11 12.23 8.91 7.60 6.88 6.42 6.10 5.86 5.68 5.54 5.42 5.24 5.05 4.86 4.76 4.65 4.55 4.44 4.34 4.23 
12 11.75 8.51 7.23 6.52 6.07 5.76 5.52 5.35 5.20 5.09 4.91 4.72 4.53 4.43 4.33 4.23 4.12 4.01 3.90 
13 11.37 8.19 6.93 6.23 5.79 5.48 5.25 5.08 4.94 4.82 4.64 4.46 4.27 4.17 4.07 3.97 3.87 3.76 3.65 
14 11.06 7.92 6.68 6.00 5.56 5.26 5.03 4.86 4.72 4.60 4.43 4.25 4.06 3.96 3.86 3.76 3.66 3.55 3.44 
15 10.80 7.70 6.48 5.80 5.37 5.07 4.85 4.67 4.54 4.42 4.25 4.07 3.88 3.79 3.69 3.58 3.48 3.37 3.26 
16 10.58 7.51 6.30 5.64 5.21 4.91 4.69 4.52 4.38 4.27 4.10 3.92 3.73 3.64 3.54 3.44 3.33 3.22 3.11 
17 10.38 7.35 6.16 5.50 5.07 4.78 4.56 4.39 4.25 4.14 3.97 3.79 3.61 3.51 3.41 3.31 3.21 3.10 2.98 
18 10.22 7.21 6.03 5.37 4.96 4.66 4.44 4.28 4.14 4.03 3.86 3.68 3.50 3.40 3.30 3.20 3.10 2.99 2.87 
19 10.07 7.09 5.92 5.27 4.85 4.56 4.34 4.18 4.04 3.93 3.76 3.59 3.40 3.31 3.21 3.11 3.00 2.89 2.78 
20 9.94 6.99 5.82 5.17 4.76 4.47 4.26 4.09 3.96 3.85 3.68 3.50 3.32 3.22 3.12 3.02 2.92 2.81 2.69 
21 9.83 6.89 5.73 5.09 4.68 4.39 4.18 4.01 3.88 3.77 3.60 3.43 3.24 3.15 3.05 2.95 2.84 2.73 2.61 
22 9.73 6.81 5.65 5.02 4.61 4.32 4.11 3.94 3.81 3.70 3.54 3.36 3.18 3.08 2.98 2.88 2.77 2.66 2.55 
23 9.63 6.73 5.58 4.95 4.54 4.26 4.05 3.88 3.75 3.64 3.47 3.30 3.12 3.02 2.92 2.82 2.71 2.60 2.48 
24 9.55 6.66 5.52 4.89 4.49 4.20 3.99 3.83 3.69 3.59 3.42 3.25 3.06 2.97 2.87 2.77 2.66 2.55 2.43 
25 9.48 6.60 5.46 4.84 4.43 4.15 3.94 3.78 3.63 3.54 3.37 3.20 3.01 2.92 2.82 2.72 2.61 2.50 2.38 
26 9.41 6.54 5.41 4.79 4.38 4.10 3.89 3.73 3.60 3.49 3.33 3.15 2.97 2.87 2.77 2.67 2.56 2.45 2.33 
27 9.34 6.49 5.36 4.74 4.34 4.06 3.85 3.69 3.56 3.45 3.28 3.11 2.93 2.83 2.73 2.63 2.52 2.41 2.25 
28 9.28 6.44 5.32 4.70 4.30 4.02 3.81 3.65 3.52 3.41 3.25 3.07 2.89 2.79 2.69 2.59 2.48 2.37 2.29 
29 9.23 6.40 5.28 4.66 4.26 3.98 3.77 3.61 3.48 3.38 3.21 3.04 2.86 2.76 2.66 2.56 2.45 2.33 2.24 
30 9.18 6.35 5.24 4.62 4.23 3.95 3.74 3.58 3.45 3.34 3.18 3.01 2.82 2.73 2.63 2.52 2.42 2.30 2.18 
40 8.83 6.07 4.98 4.37 3.99 3.71 3.51 3.35 3.22 3.12 2.95 2.78 2.60 2.50 2.40 2.30 2.18 2.06 1.93 
60 8.49 5.79 4.73 4.14 3.76 3.49 3.29 3.13 3.01 2.90 2.74 2.57 2.39 2.29 2.19 2.08 1.96 1.83 1.69 

120 8.18 5.54 4.50 3.92 3.55 3.28 3.09 2.93 2.81 2.71 2.54 2.37 2.19 2.09 1.98 1.87 1.75 1.61 1.43 
∞ 7.88 5.30 4.28 3.72 3.35 3.09 2.90 2.74 2.62 2.52 2.36 2.19 2.00 1.90 1.79 1.67 1.53 1.36 1.00 

 



F Distribution Table 2 
 
 

 α = 0.01 
 d.f.N. 

d.f.D. 1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120 ∞ 
1 4052 4999.5 5403 5625 5764 5859 5928 5982 6022 6056 6106 6157 6209 6235 6261 6287 6313 6339 6366 
2 98.50 99.00 99.17 99.25 99.30 99.33 99.36 99.37 99.39 99.40 99.42 99.43 99.45 99.46 99.47 99.47 99,48 99.49 99.50 
3 34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.49 27.35 27.23 27.05 26.87 26.69 26.60 26.50 26.41 26.32 26.22 26.13 
4 21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80 14.66 14.55 14.37 14.20 14.02 13.93 13.84 13.75 13.65 13.56 13.46 
5 16.26 13.27 12.06 11.39 10.97 10.67 10.46 10.29 10.16 10.05 9.89 9.72 9.55 9.47 9.38 9.29 9.20 9.11 9.02 
6 13.75 10.92 9.78 9.15 8.75 8.47 8.26 8.10 7.98 7.87 7.72 7.56 7.40 7.31 7.23 7.14 7.06 6.97 6.88 
7 12.25 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72 6.62 6.47 6.31 6.16 6.07 5.99 5.91 5.82 5.74 5.65 
8 11.26 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91 5.81 5.67 5.52 5.36 5.28 5.20 5.12 5.03 4.95 4.86 
9 10.56 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35 5.26 5.11 4.96 4.81 4.73 4.65 4.57 4.48 4.40 4.31 

10 10.04 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94 4.85 4.71 4.56 4.41 4.33 4.25 4.17 4.08 4.00 3.91 
11 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.63 4.54 4.40 4.25 4.10 4.02 3.94 3.86 3.78 3.69 3.60 
12 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39 4.30 4.16 4.01 3.86 3.78 3.70 3.62 3.54 3.45 3.36 
13 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 4.19 4.10 3.96 3.82 3.66 3.59 3.51 3.43 3.34 3.25 3.17 
14 8.86 6.51 5.56 5.04 4.69 4.46 4.28 4.14 4.03 3.94 3.80 3.66 3.51 3.43 3.35 3.27 3.18 3.09 3.00 
15 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89 3.80 3.67 3.52 3.37 3.29 3.21 3.13 3.05 2.96 2.87 
16 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78 3.69 3.55 3.41 3.26 3.18 3.10 3.02 2.93 2.84 2.75 
17 8.40 6.11 5.18 4.67 4.34 4.10 3.93 3.79 3.68 3.59 3.46 3.31 3.16 3.08 3.00 2.92 2.83 2.75 2.65 
18 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.60 3.51 3.37 3.23 3.08 3.00 2.92 2.84 2.75 2.66 2.57 
19 8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52 3.43 3.30 3.15 3.00 2.92 2.84 2.76 2.67 2.58 2.49 
20 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46 3.37 3.23 3.09 2.94 2.86 2.78 2.69 2.61 2.52 2.42 
21 8.02 5.78 4.87 4.37 4.04 3.81 3.64 3.51 3.40 3.31 3.17 3.03 2.88 2.80 2.72 2.64 2.55 2.46 2.36 
22 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35 3.26 3.12 2.98 2.83 2.75 2.67 2.58 2.50 2.40 2.31 
23 7.88 5.66 4.76 4.26 3.94 3.71 3.54 3.41 3.30 3.21 3.07 2.93 2.78 2.70 2.62 2.54 2.45 2.35 2.26 
24 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.26 3.17 3.03 2.89 2.74 2.66 2.58 2.49 2.40 2.31 2.21 
25 7.77 5.57 4.68 4.18 3.85 3.63 3.46 3.32 3.22 3.13 2.99 2.85 2.70 2.62 2.54 2.45 2.36 2.27 2.17 
26 7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29 3.18 3.09 2.96 2.81 2.66 2.58 2.50 2.42 2.33 2.23 2.13 
27 7.68 5.49 4.60 4.11 3.78 3.56 3.39 3.26 3.15 3.06 2.93 2.78 2.63 2.55 2.47 2.38 2.29 2.20 2.10 
28 7.64 5.45 4.57 4.07 3.75 3.53 3.36 3.23 3.12 3.03 2.90 2.75 2.60 2.52 2.44 2.35 2.26 2.17 2.06 
29 7.60 5.42 4.54 4.04 3.73 3.50 3.33 3.20 3.09 3.00 2.87 2.73 2.57 2.49 2.41 2.33 2.23 2.14 2.03 
30 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07 2.98 2.84 2.70 2.55 2.47 2.39 2.30 2.21 2.11 2.01 
40 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89 2.80 2.66 2.52 2.37 2.29 2.20 2.11 2.02 1.92 1.80 
60 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72 2.63 2.50 2.35 2.20 2.12 2.03 1.94 1.84 1.73 1.60 

120 6.85 4.79 3.95 3.48 3.17 2.96 2.79 2.66 2.56 2.47 2.34 2.19 2.03 1.95 1.86 1.76 1.66 1.53 1.38 
∞ 6.63 4.61 3.78 3.32 3.02 2.80 2.64 2.51 2.41 2.32 2.18 2.04 1.88 1.79 1.70 1.59 1.47 1.32 1.00 

 
 
 
 



F Distribution Table 3 
 
 

 α = 0.025 
 d.f.N. 

d.f.D. 1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120 ∞ 
1 647.8 799.5 864.2 899.6 921.8 937.1 948.2 956.7 963.3 968.6 976.7 984.9 993.1 997.2 1001 1006 1010 1014 1018 
2 38.51 39.00 39.17 39.25 39.30 39.33 39.36 39.37 39.39 39.40 39.41 39.43 39.45 39.46 39.46 39.47 39.48 39.49 39.50 
3 17.44 16.04 15.44 15.10 14.88 14.73 14.62 14.54 14.47 14.42 14.34 14.25 14.17 14.12 14.08 14.04 13.99 13.95 13.90 
4 12.22 10.65 9.98 9.60 9.36 9.20 9.07 8.98 8.90 8.84 8.75 8.66 8.56 8.51 8.46 8.41 8.36 8.31 8.26 
5 10.01 8.43 7.76 7.39 7.15 6.98 6.85 6.76 6.68 6.62 6.52 6.43 6.33 6.28 6.23 6.18 6.12 6.07 6.02 
6 8.81 7.26 6.60 6.23 5.99 5.82 5.70 5.60 5.52 5.46 5.37 5.27 5.17 5.12 5.07 5.01 4.96 4.90 4.85 
7 8.07 6.54 5.89 5.52 5.29 5.12 4.99 4.90 4.82 4.76 4.67 4.57 4.47 4.42 4.36 4.31 4.25 4.20 4.14 
8 7.57 6.06 5.42 5.05 4.82 4.65 4.53 4.43 4.36 4.30 4.20 4.10 4.00 3.95 3.89 3.84 3.78 3.73 3.67 
9 7.21 5.71 5.08 4.72 4.48 4.32 4.20 4.10 4.03 3.96 3.87 3.77 3.67 3.61 3.56 3.51 3.45 3.39 3.33 

10 6.94 5.46 4.83 4.47 4.24 4.07 3.95 3.85 3.78 3.72 3.62 3.52 3.42 3.37 3.31 3.26 3.20 3.14 3.08 
11 6.72 5.26 4.63 4.28 4.04 3.88 3.76 3.66 3.59 3.53 3.43 3.33 3.23 3.17 3.12 3.06 3.00 2.94 2.88 
12 6.55 5.10 4.47 4.12 3.89 3.73 3.61 3.51 3.44 3.37 3.28 3.18 3.07 3.02 2.96 2.91 2.85 2.79 2.72 
13 6.41 4.97 4.35 4.00 3.77 3.60 3.48 3.39 3.31 3.25 3.15 3.05 2.95 2.89 2.84 2.78 2.72 2.66 2.60 
14 6.30 4.86 4.24 3.89 3.66 3.50 3.38 3.29 3.21 3.15 3.05 2.95 2.84 2.79 2.73 2.67 2.61 2.55 2.49 
15 6.20 4.77 4.15 3.80 3.58 3.41 3.29 3.20 3.12 3.06 2.96 2.86 2.76 2.70 2.64 2.59 2.52 2.46 2.40 
16 6.12 4.69 4.08 3.73 3.50 3.34 3.22 3.12 3.05 2.99 2.89 2.79 2.68 2.63 2.57 2.51 2.45 2.38 2.32 
17 6.04 4.62 4.01 3.66 3.44 3.28 3.16 3.06 2.98 2.92 2.82 2.72 2.62 2.56 2.50 2.44 2.38 2.32 2.25 
18 5.98 4.56 3.95 3.61 3.38 3.22 3.10 3.01 2.93 2.87 2.77 2.67 2.56 2.50 2.44 2.38 2.32 2.26 2.19 
19 5.92 4.51 3.90 3.56 3.33 3.17 3.05 2.96 2.88 2.82 2.72 2.62 2.51 2.45 2.39 2.33 2.27 2.20 2.13 
20 5.87 4.46 3.86 3.51 3.29 3.13 3.01 2.91 2.84 2.77 2.68 2.57 2.46 2.41 2.35 2.29 2.22 2.16 2.09 
21 5.83 4.42 3.82 3.48 3.25 3.09 2.97 2.87 2.80 2.73 2.64 2.53 2.42 2.37 2.31 2.25 2.18 2.11 2.04 
22 5.79 4.38 3.78 3.44 3.22 3.05 2.93 2.84 2.76 2.70 2.60 2.50 2.39 2.33 2.27 2.21 2.14 2.08 2.00 
23 5.75 4.35 3.75 3.41 3.18 3.02 2.90 2.81 2.73 2.67 2.57 2.47 2.36 2.30 2.24 2.18 2.11 2.04 1.97 
24 5.72 4.32 3.72 3.38 3.15 2.99 2.87 2.78 2.70 2.64 2.54 2.44 2.33 2.27 2.21 2.15 2.08 2.01 1.94 
25 5.69 4.29 3.69 3.35 3.13 2.97 2.85 2.75 2.68 2.61 2.51 2.41 2.30 2.24 2.18 2.12 2.05 1.98 1.91 
26 5.66 4.27 3.67 3.33 3.10 2.94 2.82 2.73 2.65 2.59 2.49 2.39 2.28 2.22 2.16 2.09 2.03 1.95 1.88 
27 5.63 4.24 3.65 3.31 3.08 2.92 2.80 2.71 2.63 2.57 2.47 2.36 2.25 2.19 2.13 2.07 2.00 1.93 1.85 
28 5.61 4.22 3.63 3.29 3.06 2.90 2.78 2.69 2.61 2.55 2.45 2.34 2.23 2.17 2.11 2.05 1.98 1.91 1.83 
29 5.59 4.20 3.61 3.27 3.04 2.88 2.76 2.67 2.59 2.53 2.43 2.32 2.21 2.15 2.09 2.03 1.96 1.89 1.81 
30 5.57 4.18 3.69 3.25 3.03 2.87 2.75 2.65 2.57 2.51 2.41 2.31 2.20 2.14 2.07 2.01 1.94 1.87 1.79 
40 5.42 4.05 3.46 3.13 2.90 2.74 2.62 2.53 2.45 2.39 2.29 2.18 2.07 2.01 1.94 1.88 1.80 1.72 1.64 
60 5.29 3.93 3.34 3.01 2.79 2.63 2.51 2.41 2.33 2.27 2.17 2.06 1.94 1.88 1.82 1.74 1.67 1.58 1.48 

120 5.15 3.80 3.23 2.89 2.67 2.52 2.39 2.30 2.22 2.16 2.05 1.94 1.82 1.76 1.69 1.61 1.53 1.43 1.31 
∞ 5.02 3.69 3.12 2.79 2.57 2.41 2.29 2.19 2.11 2.05 1.94 1.83 1.71 1.64 1.57 1.48 1.39 1.27 1.00 

 
 
 
 



F Distribution Table 4 
 
 

 α = 0.05 
 d.f.N. 

d.f.D. 1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120 ∞ 
1 161.4 199.5 215.7 224.6 230.2 234.0 236.8 238.9 240.5 241.9 243.9 245.9 248.0 249.1 250.1 251.1 252.2 253.3 254.3 
2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38 19.40 19.41 19.43 19.45 19.45 19.46 19.47 19.48 19.49 19.50 
3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8.74 8.70 8.66 8.64 8.62 8.59 8.57 8.55 8.53 
4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.91 5.86 5.80 5.77 5.75 5.72 5.69 5.66 5.63 
5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74 4.68 4.62 4.56 4.53 4.50 4.46 4.43 4.40 4.36 
6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 4.00 3.94 3.87 3.84 3.81 3.77 3.74 3.70 3.67 
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 3.57 3.51 3.44 3.41 3.38 3.34 3.30 3.27 3.23 
8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 3.28 3.22 3.15 3.12 3.08 3.04 3.01 2.97 2.93 
9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 3.07 3.01 2.94 2.90 2.86 2.83 2.79 2.75 2.71 

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 2.91 2.85 2.77 2.74 2.70 2.66 2.62 2.58 2.54 
11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85 2.79 2.72 2.65 2.61 2.57 2.53 2.49 2.45 2.40 
12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75 2.69 2.62 2.54 2.51 2.47 2.43 2.38 2.34 2.30 
13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.67 2.60 2.53 2.46 2.42 2.38 2.34 2.30 2.25 2.21 
14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.60 2.53 2.46 2.39 2.35 2.31 2.27 2.22 2.18 2.13 
15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54 2.48 2.40 2.33 2.29 2.25 2.20 2.16 2.11 2.07 
16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49 2.42 2.35 2.28 2.24 2.19 2.15 2.11 2.06 2.01 
17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 2.45 2.38 2.31 2.23 2.19 2.15 2.10 2.06 2.01 1.96 
18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41 2.34 2.27 2.19 2.15 2.11 2.06 2.02 1.97 1.92 
19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 2.38 2.31 2.23 2.16 2.11 2.07 2.03 1.98 1.93 1.88 
20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35 2.28 2.20 2.12 2.08 2.04 1.99 1.95 1.90 1.84 
21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37 2.32 2.25 2.18 2.10 2.05 2.01 1.96 1.92 1.87 1.81 
22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 2.30 2.23 2.15 2.07 2.03 1.98 1.94 1.89 1.84 1.78 
23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32 2.27 2.20 2.13 2.05 2.01 1.96 1.91 1.86 1.81 1.76 
24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 2.25 2.18 2.11 2.03 1.98 1.94 1.89 1.84 1.79 1.73 
25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 2.24 2.16 2.09 2.01 1.96 1.92 1.87 1.82 1.77 1.71 
26 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 2.22 2.15 2.07 1.99 1.95 1.90 1.85 1.80 1.75 1.69 
27 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25 2.20 2.13 2.06 1.97 1.93 1.88 1.84 1.79 1.73 1.67 
28 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24 2.19 2.12 2.04 1.96 1.91 1.87 1.82 1.77 1.71 1.65 
29 4.18 3.33 2.93 2.70 2.55 2.43 2.35 2.28 2.22 2.18 2.10 2.03 1.94 1.90 1.85 1.81 1.75 1.70 1.64 
30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16 2.09 2.01 1.93 1.89 1.84 1.79 1.74 1.68 1.62 
40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08 2.00 1.92 1.84 1.79 1.74 1.69 1.64 1.58 1.51 
60 4.00 3.15 2.76 2.52 2.37 2.25 2.17 2.10 2.04 1.99 1.92 1.84 1.75 1.70 1.65 1.59 1.53 1.47 1.39 

120 3.92 3.07 2.68 2.45 2.29 2.17 2.09 2.02 1.96 1.91 1.83 1.75 1.66 1.61 1.55 1.50 1.43 1.35 1.25 
∞ 3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88 1.83 1.75 1.67 1.57 1.52 1.46 1.39 1.32 1.22 1.00 

 
 
 
 



F Distribution Table 5 
 
 

 α = 0.10 
 d.f.N. 

d.f.D. 1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120 ∞ 
1 39.86 49.50 53.59 55.83 57.24 58.20 58.91 59.44 59.86 60.19 60.71 61.22 61.74 62.00 62.26 62.53 62.79 63.06 63.33 
2 8.53 9.00 9.16 9.24 9.29 9.33 9.35 9.37 9.38 9.39 9.41 9.42 9.44 9.45 9.46 9.47 9.47 9.48 9.49 
3 5.54 5.46 5.39 5.34 5.31 5.28 5.27 5.25 5.24 5.23 5.22 5.20 5.18 5.18 5.17 5.16 5.15 5.14 5.13 
4 4.54 4.32 4.19 4.11 4.05 4.01 3.98 3.95 3.94 3.92 3.90 3.87 3.84 3.83 3.82 3.80 3.79 3.78 3.76 
5 4.06 3.78 3.62 3.52 3.45 3.40 3.37 3.34 3.32 3.30 3.27 3.24 3.21 3.19 3.17 3.16 3.14 3.12 3.10 
6 3.78 3.46 3.29 3.18 3.11 3.05 3.01 2.98 2.96 2.94 2.90 2.87 2.84 2.82 2.80 2.78 2.76 2.74 2.72 
7 3.59 3.26 3.07 2.96 2.88 2.83 2.78 2.75 2.72 2.70 2.67 2.63 2.59 2.58 2.56 2.54 2.51 2.49 2.47 
8 3.46 3.11 2.92 2.81 2.73 2.67 2.62 2.59 2.56 2.54 2.50 2.46 2.42 2.40 2.38 2.36 2.34 2.32 2.29 
9 3.36 3.01 2.81 2.69 2.61 2.55 2.51 2.47 2.44 2.42 2.38 2.34 2.30 2.28 2.25 2.23 2.21 2.18 2.16 

10 3.29 2.92 2.73 2.61 2.52 2.46 2.41 2.38 2.35 2.32 2.28 2.24 2.20 2.18 2.16 2.13 2.11 2.08 2.06 
11 3.23 2.86 2.66 2.54 2.45 2.39 2.34 2.30 2.27 2.25 2.21 2.17 2.12 2.10 2.08 2.05 2.03 2.00 1.97 
12 3.18 2.81 2.61 2.48 2.39 2.33 2.28 2.24 2.21 2.19 2.15 2.10 2.06 2.04 2.01 1.99 1.96 1.93 1.90 
13 3.14 2.76 2.56 2.43 2.35 2.28 2.23 2.20 2.16 2.14 2.10 2.05 2.01 1.98 1.96 1.93 1.90 1.88 1.85 
14 3.10 2.73 2.52 2.39 2.31 2.24 2.19 2.15 2.12 2.10 2.05 2.01 1.96 1.94 1.91 1.89 1.86 1.83 1.80 
15 3.07 2.70 2.49 2.36 2.27 2.21 2.16 2.12 2.09 2.06 2.02 1.97 1.92 1.90 1.87 1.85 1.82 1.79 1.76 
16 3.05 2.67 2.46 2.33 2.24 2.18 2.13 2.09 2.06 2.03 1.99 1.94 1.89 1.87 1.84 1.81 1.78 1.75 1.72 
17 3.03 2.64 2.44 2.31 2.22 2.15 2.10 2.06 2.03 2.00 1.96 1.91 1.86 1.84 1.81 1.78 1.75 1.72 1.69 
18 3.01 2.62 2.42 2.29 2.20 2.13 2.08 2.04 2.00 1.98 1.93 1.89 1.84 1.81 1.78 1.75 1.72 1.69 1.66 
19 2.99 2.61 2.40 2.27 2.18 2.11 2.06 2.02 1.98 1.96 1.91 1.86 1.81 1.79 1.76 1.73 1.70 1.67 1.63 
20 2.97 2.59 2.38 2.25 2.16 2.09 2.04 2.00 1.96 1.94 1.89 1.84 1.79 1.77 1.74 1.71 1.68 1.64 1.61 
21 2.96 2.57 2.36 2.23 2.14 2.08 2.02 1.98 1.95 1.92 1.87 1.83 1.78 1.75 1.72 1.69 1.66 1.62 1.59 
22 2.95 2.56 2.35 2.22 2.13 2.06 2.01 1.97 1.93 1.90 1.86 1.81 1.76 1.73 1.70 1.67 1.64 1.60 1.57 
23 2.94 2.55 2.34 2.21 2.11 2.05 1.99 1.95 1.92 1.89 1.84 1.80 1.74 1.72 1.69 1.66 1.62 1.59 1.55 
24 2.93 2.54 2.33 2.19 2.10 2.04 1.98 1.94 1.91 1.88 1.83 1.78 1.73 1.70 1.67 1.64 1.61 1.57 1.53 
25 2.92 2.53 2.32 2.18 2.09 2.02 1.97 1.93 1.89 1.87 1.82 1.77 1.72 1.69 1.66 1.63 1.59 1.56 1.52 
26 2.91 2.52 2.31 2.17 2.08 2.01 1.96 1.92 1.88 1.86 1.81 1.76 1.71 1.68 1.65 1.61 1.58 1.54 1.50 
27 2.90 2.51 2.30 2.17 2.07 2.00 1.95 1.91 1.87 1.85 1.80 1.75 1.70 1.67 1.64 1.60 1.57 1.53 1.49 
28 2.89 2.50 2.29 2.16 2.06 2.00 1.94 1.90 1.87 1.84 1.79 1.74 1.69 1.66 1.63 1.59 1.56 1.52 1.48 
29 2.89 2.50 2.28 2.15 2.06 1.99 1.93 1.89 1.86 1.83 1.78 1.73 1.68 1.65 1.62 1.58 1.55 1.51 1.47 
30 2.88 2.49 2.28 2.14 2.05 1.98 1.93 1.88 1.85 1.82 1.77 1.72 1.67 1.64 1.61 1.57 1.54 1.50 1.46 
40 2.84 2.44 2.23 2.09 2.00 1.93 1.87 1.83 1.79 1.76 1.71 1.66 1.61 1.57 1.54 1.51 1.47 1.42 1.38 
60 2.79 2.39 2.18 2.04 1.95 1.87 1.82 1.77 1.74 1.71 1.66 1.60 1.54 1.51 1.48 1.44 1.40 1.35 1.29 

120 2.75 2.35 2.13 1.99 1.90 1.82 1.77 1.72 1.68 1.65 1.60 1.55 1.48 1.45 1.41 1.37 1.32 1.26 1.19 
∞ 2.71 2.30 2.08 1.94 1.85 1.77 1.72 1.67 1.63 1.60 1.55 1.49 1.42 1.38 1.34 1.30 1.24 1.17 1.00 
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