## Course : Algebra 3

Year : 2023/2024
Department of Computer Science

## Chapter 3 :

## Endomorphisms

## 1 Properties of eigenvalues and of eigenvectors

Definition 1.1 Suppose that $A$ is an $n \times n$ matrix and that

$$
\begin{equation*}
A X=\lambda X \tag{1}
\end{equation*}
$$

is a linear system where $X$ is a nonzero vector. Then, $\lambda$ is a so-called eigenvalue of the matrix $A$.
Definition 1.2 Let us assume that

$$
\begin{equation*}
A X=\lambda X \tag{2}
\end{equation*}
$$

is a linear system where $A$ is an $n \times n$ matrix, $X$ is a nonzero vector, and where $\lambda$ is an eigenvalue. Then, $X$ is called an eigenvector of $A$.

Definition 1.3 Let $A$ be an $n \times n$ matrix and let

$$
\begin{equation*}
D=P^{-1} A P \tag{3}
\end{equation*}
$$

Then, we can say that $D$ is similar to the matrix $A$ if and only if the $n \times n$ matrix $P$ is nonsingular and satisfies (3).

Theorem 1.1 Let $A$ and $D$ be similar such that

$$
\begin{equation*}
A=P D P^{-1} \tag{4}
\end{equation*}
$$

Then in the case where $D\left(P^{-1}\right) X=\lambda\left(P^{-1} X\right)$, we have

$$
A X=\lambda X
$$

Corollary 1.1 Let $\lambda$ be nonzero. Then, we find that the eigenvalues of the product $A^{T} A$, denoted by $\lambda$, are the eigenvalues of $A A^{T}$.

Theorem 1.2 Suppose that $p(\lambda)$ satisfies

$$
p(\lambda)=|A-\lambda I|=\prod_{i=1}^{n}\left(\lambda_{i}-\lambda\right)
$$

Then, we have

$$
\operatorname{tr}(A)=\sum_{i=1}^{n} \lambda_{i}
$$

and

$$
|A|=p(0)=\prod_{i=1}^{n} \lambda_{i}
$$

Theorem 1.3 Suppose that $A$ is an $n \times m$ matrix and that $B$ is an $m \times n$ matrix. Then, we have

$$
\begin{equation*}
(-\lambda)^{n-m}\left|B A-\lambda I_{m}\right|=\left|A B-\lambda I_{n}\right|, \text { for } m \preccurlyeq n \tag{5}
\end{equation*}
$$

Theorem 1.4 Let $A$ be a diagonal matrix, an upper triangular matrix, or a lower triangular matrix. Then, $\lambda$ must be the diagonal entries of this matrix.

Theorem 1.5 Let $A$ and $B$ be $n \times n$ matrices. Suppose that $A$ and $B$ are similar matrices. Then, we have that the eigenvalue of $A$ is equal to the eigenvalue of $B$.

## 2 Characteristic polynomials

Definition 2.1 Let $A$ be a square matrix and suppose that $p(\lambda)$ is the so-called characteristic polynomial of $A$ where

$$
p(\lambda)=\operatorname{det}(A-\lambda I)
$$

Then, the roots of

$$
p(\lambda)=0
$$

represent the eigenvalues of $A$.
Theorem 2.1 Assume that

$$
p(\lambda)=\operatorname{det}(A-\lambda I)
$$

where $A$ is an $n \times n$ matrix. Then, we have

$$
p(A)=0
$$

Theorem 2.2 Suppose that $A$ and $B$ are square and similar matrices. Then, the characteristic polynomial of $A$ is equal to the characteristic polynomial of $B$, i.e.

$$
\operatorname{det}(A-\lambda I)=\operatorname{det}(B-\lambda I)
$$

Theorem 2.3 Let $A$ be a square matrix and let $A^{T}$ denote the transpose of $A$. Then, the characteristic polynomial of $A$ is equal to the characteristic polynomial of $A^{T}$, i.e.

$$
\operatorname{det}(A-\lambda I)=\operatorname{det}\left(A^{T}-\lambda I\right)
$$

## 3 Diagonalizable matrices

Definition 3.1 Suppose that $U$ and $V$ are $K$-vector spaces and that $f: U \longrightarrow V$ satisfies, for $\alpha, \beta \in K$,

$$
f(\alpha x+\beta y)=\alpha f(x)+\beta f(y), \text { for } x, y \in U
$$

Then, $f$ is said to be a homomorphism, in other words, a linear transformation.
Definition 3.2 Suppose that $U$ is a K-vector space. Then, a K-endomorphism represents a K-linear transformation $U \longrightarrow U$.

Theorem 3.1 Suppose that $A$ is a matrix and that an endomorphism $f: U \longrightarrow U$ is associated with $A$. Then, $A$ is said to be diagonalizable if and only if the eigenvectors $X_{1}, X_{2}, \cdots, X_{n}$ must be linearly independent.

## Remark 3.1 .

Let $A$ be an $n \times n$ matrix and let $D$ denote a diagonal matrix. In the case where there exists $P$ with $P$ is a square and nonsingular matrix such that

$$
\begin{equation*}
D=P^{-1} A P \tag{6}
\end{equation*}
$$

Then, $A$ is said to be diagonalizable.
Theorem 3.2 Let $A$ be an $n \times n$ matrix and let $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$ be the eigenvalues of $A$. Under the condition that $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$ are distinct, then we can say that the matrix $A$ is diagonalizable.

## 4 Systems of differential equations

A system of differential equations is given by

$$
\begin{equation*}
X^{\prime}=A X \tag{7}
\end{equation*}
$$

where $A$ is a coefficient matrix defined as

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & & & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right)
$$

and where

$$
X=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right) \text { and } X^{\prime}=\left(\begin{array}{c}
x_{1}^{\prime} \\
x_{2}^{\prime} \\
\vdots \\
x_{n}^{\prime}
\end{array}\right)
$$

Under the condition that $A$ is diagonalizable, it is possible to define a matrix $P$. Here, the product $P^{-1} A P$ leads to get a diagonal matrix which is denoted by $D$, i.e.

$$
\begin{equation*}
D=P^{-1} A P \tag{8}
\end{equation*}
$$

Moreover, the homogeneous system of differential equations

$$
\begin{equation*}
X^{\prime}=A X \tag{9}
\end{equation*}
$$

can be solved by taking

$$
X=P Y
$$

Thus, we have

$$
P Y^{\prime}=A P Y
$$

which yields

$$
Y^{\prime}=P^{-1} A P Y
$$

it follows from $D=P^{-1} A P$ that

$$
Y^{\prime}=D Y
$$

This means, for $i=1, \cdots, n$,

$$
\begin{equation*}
y_{i}^{\prime}=\lambda_{i} y_{i} . \tag{10}
\end{equation*}
$$

Then, the solution of (10) is given by

$$
y_{i}=C_{i} \exp \left(\lambda_{i} t\right), \text { for } i=1, \cdots, n
$$

The solution of (7) is $X=P Y$ where

$$
Y=\left(\begin{array}{c}
C_{1} \exp \left(\lambda_{1} t\right) \\
C_{2} \exp \left(\lambda_{2} t\right) \\
\vdots \\
C_{n} \exp \left(\lambda_{n} t\right)
\end{array}\right)
$$

## References

[1] A. Jeffrey, Matrix operations for engineers and scientists: an essential guide in linear algebra, Springer Science \& Business Media, 2010
[2] D. G. Zill and W. S. Wright, Advanced engineering mathematics, Fourth edition, Jones \& Bartlett Learning, 2011
[3] A. Das and C. E. Veni Madhavan, Public-Key Cryptography: Theory and Practice, Pearson Education India, 2009
[4] F. Neri and others, Linear algebra for computational sciences and engineering, Springer, 2016
[5] D. W. Lewis, Matrix theory, World scientific, 1991
[6] C. Y. Young, College algebra, John Wiley \& Sons, 2021
[7] H. Kreyszig and E. Kreyszig, Advanced Engineering Mathematics, Student Solutions Manual and Study Guide, Volume 1: Chapters 1-12, John Wiley \& Sons, 2012
[8] C. R. Rao and H. Toutenburg, Linear models : Least squares and alternatives, Springer, 2013

