Course : Algebra 3 Year : 2023/2024 Department of Computer Science

Chapter 3 :

Endomorphisms

1 Properties of eigenvalues and of eigenvectors

Definition 1.1 Suppose that A is an $n \times n$ matrix and that

$$AX = \lambda X,\tag{1}$$

is a linear system where X is a nonzero vector. Then, λ is a so-called eigenvalue of the matrix A.

Definition 1.2 Let us assume that

$$AX = \lambda X,\tag{2}$$

is a linear system where A is an $n \times n$ matrix, X is a nonzero vector, and where λ is an eigenvalue. Then, X is called an eigenvector of A.

Definition 1.3 Let A be an $n \times n$ matrix and let

$$D = P^{-1}AP. (3)$$

Then, we can say that D is similar to the matrix A if and only if the $n \times n$ matrix P is nonsingular and satisfies (3).

Theorem 1.1 Let A and D be similar such that

$$A = PDP^{-1}. (4)$$

Then in the case where $D(P^{-1})X = \lambda(P^{-1}X)$, we have

 $AX = \lambda X.$

Corollary 1.1 Let λ be nonzero. Then, we find that the eigenvalues of the product $A^T A$, denoted by λ , are the eigenvalues of AA^T .

Dr. Ahlem Nemer

Theorem 1.2 Suppose that $p(\lambda)$ satisfies

$$p(\lambda) = |A - \lambda I| = \prod_{i=1}^{n} (\lambda_i - \lambda).$$

Then, we have

$$tr(A) = \sum_{i=1}^{n} \lambda_i$$

and

$$|A| = p(0) = \prod_{i=1}^{n} \lambda_i.$$

Theorem 1.3 Suppose that A is an $n \times m$ matrix and that B is an $m \times n$ matrix. Then, we have

$$(-\lambda)^{n-m}|BA - \lambda I_m| = |AB - \lambda I_n|, \text{ for } m \preccurlyeq n.$$
(5)

Theorem 1.4 Let A be a diagonal matrix, an upper triangular matrix, or a lower triangular matrix. Then, λ must be the diagonal entries of this matrix.

Theorem 1.5 Let A and B be $n \times n$ matrices. Suppose that A and B are similar matrices. Then, we have that the eigenvalue of A is equal to the eigenvalue of B.

2 Characteristic polynomials

Definition 2.1 Let A be a square matrix and suppose that $p(\lambda)$ is the so-called characteristic polynomial of A where

$$p(\lambda) = \det(A - \lambda I)$$

Then, the roots of

 $p(\lambda) = 0$

represent the eigenvalues of A.

Theorem 2.1 Assume that

$$p(\lambda) = \det(A - \lambda I),$$

where A is an $n \times n$ matrix. Then, we have

p(A) = 0.

Theorem 2.2 Suppose that A and B are square and similar matrices. Then, the characteristic polynomial of A is equal to the characteristic polynomial of B, i.e.

$$\det(A - \lambda I) = \det(B - \lambda I).$$

Theorem 2.3 Let A be a square matrix and let A^T denote the transpose of A. Then, the characteristic polynomial of A is equal to the characteristic polynomial of A^T , i.e.

$$\det(A - \lambda I) = \det(A^T - \lambda I).$$

3 Diagonalizable matrices

Definition 3.1 Suppose that U and V are K-vector spaces and that $f: U \longrightarrow V$ satisfies, for $\alpha, \beta \in K$,

$$f(\alpha x + \beta y) = \alpha f(x) + \beta f(y), \text{ for } x, y \in U.$$

Then, f is said to be a homomorphism, in other words, a linear transformation.

Definition 3.2 Suppose that U is a K-vector space. Then, a K-endomorphism represents a K-linear transformation $U \longrightarrow U$.

Theorem 3.1 Suppose that A is a matrix and that an endomorphism $f: U \longrightarrow U$ is associated with A. Then, A is said to be diagonalizable if and only if the eigenvectors X_1, X_2, \dots, X_n must be linearly independent.

Remark 3.1 .

Let A be an $n \times n$ matrix and let D denote a diagonal matrix. In the case where there exists P with P is a square and nonsingular matrix such that

$$D = P^{-1}AP. (6)$$

Then, A is said to be diagonalizable.

Theorem 3.2 Let A be an $n \times n$ matrix and let $\lambda_1, \lambda_2, \dots, \lambda_n$ be the eigenvalues of A. Under the condition that $\lambda_1, \lambda_2, \dots, \lambda_n$ are distinct, then we can say that the matrix A is diagonalizable.

4 Systems of differential equations

A system of differential equations is given by

$$X^{'} = AX,\tag{7}$$

where A is a coefficient matrix defined as

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix},$$

and where

$$X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} and X' = \begin{pmatrix} x'_1 \\ x'_2 \\ \vdots \\ x'_n \end{pmatrix}.$$

Under the condition that A is diagonalizable, it is possible to define a matrix P. Here, the product $P^{-1}AP$ leads to get a diagonal matrix which is denoted by D, i.e.

X = PY.

 $PY^{'} = APY,$

 $Y^{'} = DY.$

$$D = P^{-1}AP.$$
(8)

Moreover, the homogeneous system of differential equations

$$X^{'} = AX, \tag{9}$$

can be solved by taking

Thus, we have

which yields

 $Y^{'} = P^{-1}APY,$

it follows from $D = P^{-1}AP$ that

This means, for $i = 1, \dots, n$,

$$y_i' = \lambda_i y_i. \tag{10}$$

Then, the solution of (10) is given by

$$y_i = C_i \exp(\lambda_i t), \text{ for } i = 1, \cdots, n.$$

The solution of (7) is X = PY where

$$Y = \begin{pmatrix} C_1 \exp(\lambda_1 t) \\ C_2 \exp(\lambda_2 t) \\ \vdots \\ C_n \exp(\lambda_n t) \end{pmatrix}.$$

References

- A. Jeffrey, Matrix operations for engineers and scientists: an essential guide in linear algebra, Springer Science & Business Media, 2010
- [2] D. G. Zill and W. S. Wright, Advanced engineering mathematics, Fourth edition, Jones & Bartlett Learning, 2011
- [3] A. Das and C. E. Veni Madhavan, Public-Key Cryptography: Theory and Practice, Pearson Education India, 2009
- [4] F. Neri and others, Linear algebra for computational sciences and engineering, Springer, 2016
- [5] D. W. Lewis, Matrix theory, World scientific, 1991
- [6] C. Y. Young, College algebra, John Wiley & Sons, 2021
- [7] H. Kreyszig and E. Kreyszig, Advanced Engineering Mathematics, Student Solutions Manual and Study Guide, Volume 1: Chapters 1-12, John Wiley & Sons, 2012
- [8] C. R. Rao and H. Toutenburg, Linear models : Least squares and alternatives, Springer, 2013