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Chapter 3 :
Endomorphisms

1 Properties of eigenvalues and of eigenvectors

Definition 1.1 Suppose that A is an n× n matrix and that

AX = λX, (1)

is a linear system where X is a nonzero vector. Then, λ is a so-called eigenvalue of the matrix A.

Definition 1.2 Let us assume that
AX = λX, (2)

is a linear system where A is an n × n matrix, X is a nonzero vector, and where λ is an eigenvalue. Then, X
is called an eigenvector of A.

Definition 1.3 Let A be an n× n matrix and let

D = P−1AP. (3)

Then, we can say that D is similar to the matrix A if and only if the n×n matrix P is nonsingular and satisfies
(3).

Theorem 1.1 Let A and D be similar such that

A = PDP−1. (4)

Then in the case where D(P−1)X = λ(P−1X), we have

AX = λX.

Corollary 1.1 Let λ be nonzero. Then, we find that the eigenvalues of the product ATA, denoted by λ, are the
eigenvalues of AAT .
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Theorem 1.2 Suppose that p(λ) satisfies

p(λ) = |A− λI| =
n∏

i=1

(λi − λ).

Then, we have

tr(A) =

n∑
i=1

λi,

and

|A| = p(0) =

n∏
i=1

λi.

Theorem 1.3 Suppose that A is an n×m matrix and that B is an m× n matrix. Then, we have

(−λ)n−m|BA− λIm| = |AB − λIn|, for m 4 n. (5)

Theorem 1.4 Let A be a diagonal matrix, an upper triangular matrix, or a lower triangular matrix. Then, λ
must be the diagonal entries of this matrix.

Theorem 1.5 Let A and B be n×n matrices. Suppose that A and B are similar matrices. Then, we have that
the eigenvalue of A is equal to the eigenvalue of B.

2 Characteristic polynomials

Definition 2.1 Let A be a square matrix and suppose that p(λ) is the so-called characteristic polynomial of A
where

p(λ) = det(A− λI).

Then, the roots of
p(λ) = 0

represent the eigenvalues of A.

Theorem 2.1 Assume that
p(λ) = det(A− λI),

where A is an n× n matrix. Then, we have
p(A) = 0.
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Theorem 2.2 Suppose that A and B are square and similar matrices. Then, the characteristic polynomial of
A is equal to the characteristic polynomial of B, i.e.

det(A− λI) = det(B − λI).

Theorem 2.3 Let A be a square matrix and let AT denote the transpose of A. Then, the characteristic polyno-
mial of A is equal to the characteristic polynomial of AT , i.e.

det(A− λI) = det(AT − λI).

3 Diagonalizable matrices

Definition 3.1 Suppose that U and V are K-vector spaces and that f : U −→ V satisfies, for α, β ∈ K,

f(αx+ βy) = αf(x) + βf(y), for x, y ∈ U.

Then, f is said to be a homomorphism, in other words, a linear transformation.

Definition 3.2 Suppose that U is a K-vector space. Then, a K-endomorphism represents a K-linear transfor-
mation U −→ U .

Theorem 3.1 Suppose that A is a matrix and that an endomorphism f : U −→ U is associated with A. Then,
A is said to be diagonalizable if and only if the eigenvectors X1, X2, · · · , Xn must be linearly independent.

Remark 3.1 .
Let A be an n × n matrix and let D denote a diagonal matrix. In the case where there exists P with P is a
square and nonsingular matrix such that

D = P−1AP. (6)

Then, A is said to be diagonalizable.

Theorem 3.2 Let A be an n × n matrix and let λ1, λ2, · · · , λn be the eigenvalues of A. Under the condition
that λ1, λ2, · · · , λn are distinct, then we can say that the matrix A is diagonalizable.
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4 Systems of differential equations

A system of differential equations is given by

X
′

= AX, (7)

where A is a coefficient matrix defined as

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
an1 an2 · · · ann

 ,

and where

X =


x1
x2
...
xn

 and X
′

=


x

′

1

x
′

2
...

x
′

n

 .

Under the condition that A is diagonalizable, it is possible to define a matrix P . Here, the product P−1AP
leads to get a diagonal matrix which is denoted by D, i.e.

D = P−1AP. (8)

Moreover, the homogeneous system of differential equations

X
′

= AX, (9)

can be solved by taking
X = PY.

Thus, we have
PY

′
= APY,

which yields
Y

′
= P−1APY,

it follows from D = P−1AP that
Y

′
= DY.



Dr. Ahlem Nemer 5

This means, for i = 1, · · · , n,
y

′

i = λiyi. (10)

Then, the solution of (10) is given by

yi = Ci exp(λit), for i = 1, · · · , n.

The solution of (7) is X = PY where

Y =


C1 exp(λ1t)
C2 exp(λ2t)

...
Cn exp(λnt)

 .
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