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2 mars 2024

1 Vector Spaces

When you read the word vector you may immediately think of two points in R? (or R3 )
connected by an arrow. Mathematically speaking, a vector is just an element of a vector space.
This then begs the question : What is a vector space? Roughly speaking, a vector space is a
set of objects that can be added and multiplied by scalars.

Definition 1.0.1 A wvector space is a set E of objects, called vectors, on which two operations
called addition and scalar multiplication have been defined satisfying the following properties.
If u,v,w are in E and if o, B € R are scalars :

The sum u+ v is in E. (closure under addition)

u+v=uv+u (addition is commutative)

(u+v)+w=u+ (v+w) (addition is associative)

There is a vector in E called the zero vector, denoted by 0, satisfying v+ 0 = v.

For each v there is a vector —v in E such that v+ (—v) = 0.

S S o v~

The scalar multiple of v by «, denoted - v, is in E. (closure under scalar multipli-
cation)

7 a-(u+v)=a-u+a-v.
8 (a+08)-v=a-v+5-v.
9. (af) - v=a-(B-v).

10. 1-v=vw

Remark 1.0.1 1. Elements of E are called vectors, and elements of R are called scalars.
Instead of vector space on R we also say, R— wvector space.

2. It can be shown that 0 -v =0 for any vector v in E.

To better understand the definition of a vector space, we first consider a few elementary
examples.

Example 1.0.1 1. R2,R3 and more generally R"™ are real vector spaces.

2. The set of applications from R into R is a vector space on R.
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3. Let E be the unit disc in R? :
E={(z,y) eR’/ 2*+y* <1}

The circle is not closed under scalar multiplication. For example, take uw = (1,0) € E
and multiply by say o = 2. Then au = (2,0) is not in E. Therefore, property (6) of the
definition of a vector space fails, and consequently the unit disc is not a vector space.

4. Let E be the graph of the quadratic function f(x) = 2? :
E={(x,y) eR?/ y=2?}

The set E is not closed under scalar multiplication. For example, w = (1,1) is a point in
E but 2u = (2,2) is not. You may also notice that E is not closed under addition either.
For example, both uw = (1,1) and v = (2,4) are in E but u+ v = (3,5) and (3,5) is not
a point on the parabola E. Therefore, the graph of f(x) = x? is not a vector space.

5. F(R,R) : The vector space of functions from R into R.

a/ Let f and g two elements of F(R,R). The function f + g is defined by :

Ve eR, (f+g)(x)=f(z)+g(z)
b/ If X is a real number and f is a function of F(R,R), the function \.f is defined by the

image of any real x as follows :
VeeR, (A.f)(x)=Af(x)
¢/ The identity The identity for addition is the null function, defined by :
VeeR, f(z)=0.

This function can be written Op = Or®R)-
d/ The inverses The inverse of [ in F(R,R) is the function g from R to R defined by :

Ve eR, g(z)=—f(x).

The inverse of f is noted —f.

6. Let E=Ry[X] ={P =aX?+0bX +c¢, a,bceR) be the set of polynomials of degree
less than or equal to 2, with coefficients in R, provided with the following operations :

a/ Alaw” +7, given by :VP,Q € E, P=aX?’+bX+¢, Q=dX?*+VX +/,
P+Q=(a+d)X*+(b+V)X + (c+).
b/ Alaw” -7 defined by :Va € R, VP € E, P=aX?+bX +c,
a-P=(aa)X?+ (ab)X + (ac).

(E,+,-) is a vectorial space on R.
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1.1 Subspaces of Vector Spaces

Frequently, one encounters a vector space F' that is a subset of a larger vector space E. In
this case, we would say that F'is a subspace of /. Below is the formal definition.

Definition 1.1.1 Let E be a vector space. A subset F' of E is called a subspace of E if it
satisfies the following properties :

1. The zero vector of E is also in F.
2. F is closed under addition, that is, if w and v are in F then u+ v is in F.

3. I is closed under scalar multiplication, that is, if u is in Fand « is a scalar then o - u
15 1 F.

Example 1.1.1 Let F' be the graph of the function f(x) =2z :
F={(z,y) eR?y =2z} .

F a subspace of £ = R2.

If x =0 theny =2-0 =0 and therefore (0,0) is in F.

Let u = (a,2a) and v = (b, 2b) be elements of F. Then u+v = (a,2a)+ (b, 2b) = (a+b, 2a+2b) =
(a4 b,2(a + b)) Because the x and y components of u+ v satisfy y = 2z then u + v is inside
m F. Thus, F s closed under addition.

Let o be any scalar and let w = (a,2a) be an element of F'. Then au = (aa, a2a) = (aa,20a) €
F. F is closed under scalar multiplication.

All three conditions of a subspace are satisfied for F' and therefore F is a subspace of E.

Example 1.1.2 Let F be the first quadrant in R? :
F={(z,y) R’ z>0,y>0}.

The set F' contains the zero vector and the sum of two vectors in F is again in F. However,
F' is not closed under scalar multiplication. For example if u = (1,1) and o = —1, then
au = (—1,—1) is not in F because the components of au are clearly not non-negative.

Example 1.1.3 Let E = R,[t] and consider the subset F of E :
F={P(t) e Ry[t]/ F'(1) =0}

F s a subspace of E.
The zero polynomial 0(t) clearly has derivative at t = 1 equal to zero, that is, 0'(1) = 0,
and thus the zero polynomial is in F. Now suppose that P(t) and Q(t) are two polynomials
in F. Then, P'(1) = 0 and also Q'(1) = 0, from the rules of differentiation, we compute
(P+Q)(1)=P'(1)+Q'(1) = 0+0.
Therefore, the polynomial (P + Q)(t) is in F', and thus F is closed under addition.
Now let a be any scalar and let P(t) be a polynomial in F. Then P'(1) = 0. Using the rules
of differentiation, we compute that (aP)' (1) = aP'(1) = a.0 = 0. Therefore, the polynomial
(aP)(t) is in F and thus F is closed under scalar multiplication.
All three properties of a subspace hold for F' and therefore F is a subspace of R, [t].

Example 1.1.4 1. Any field K is a vectorspace on K.
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2. Any field I containing a field K is a vector space on K and K is a vector subspace of L.

3. C is a vector space on R and R is a subspace of C.

Example 1.1.5 Consider F = {(z,y) € R?*/ 2>+ y?> <0}, F =0, so F is not a subspace of
R2.

Ezample 1.1.6 Let F = {(z,y) € R*/ x—y+1=0}, we have : Og= = (0,0) ¢ F, since
0—0+1#0 therefore F is not a subspace of R

Exzample 1.1.7 Let F = {(z,y) € R?/ zy >0}, we have (2,1),(—=1,-2) € F, but (2,1) +
(—1,—2) = (1,—1) & Fbecause does not check xy > 0 so F' is not a subspace of R.

1.2 Operation on vector subspaces

Proposition 1.2.1 Let K be a field, E a K—uvector space, F' and G two subspaces of E, then :
1. FNG is a subspace of E.
2. FUG is a subspace of E if and only if, F C Gor G C F.

Proof 1.2.1 (of 1.) We have F and G are subspaces of E, then : (F C E and G C E therefore
FNGCE.)

a/ Og € F and Og € G which means that Op € FNG.

b/ Vo, €K, Var,ye€ FNG (i.e.x € FAzx € G), we have ax + By € F and ax + Py € G,
therefore ax + fy € FNG. Then FNG is a subspace of E.

Remark 1.2.1 We generalize the property (1) to any family of vector subspaces, i.e. If (F})icr 1cn,
18 a family of subvector spaces, then N;crF; is a subspace.

Ezxzample 1.2.1 Let E = R? be the vector space on R. Consider the following subspaces F and
G :

F={(z,y) eR?} y=0}, G={(z,y) eR?) z=0}.
F and G are the x-azis and y-axis respectively.
Since (1,0) € F with (1,0) ¢ G, then F € G and (0,1) € G with (0,1) ¢ F, then G ¢ F.
Therefore, F'U G is not a subspace of R2.
The result can be obtained by noting that (1,0),(0,1) € FUG but (1,0) + (0,1) = (1,1) ¢ F
and (1,1) ¢ G then (1,1) ¢ FUG. This means that F'U G is not a subspace of E.

Theoreme 1.2.1 Let K be a field, E a vector space on K, F' and G two subspaces of E.
The set F'+ G defined by

F+G={x+y/ 2z€F and ye G} CE

is a subspace of E called sum of the subspaces F' and G. If in addition F NG = {0g}, we say
that the sum F + G is a direct sum and we write F & G.

Proof 1.2.2 F' 4 G s a subspace of E :

1. 0p =0 +0g € F+ G because Og € F and Og € G since F and G are two subspaces of
E.
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2. Va,peK, Vz,2/€ F4+G, then z=x+y and 2 = 2’ +y with x,2’ € F and y,y' € G.
Since F' and G are subspaces of E, then

ar+ Bz’ € F and ay+ py €G.
This means that (ax + ') + (ay + yY') € F + G.

Therefore (ax+ Bz’) + (ay+BY') = alz+y)+ 82" +y') € F+G, i.e. az+ 2 € F+G
Example 1.2.2 Consider the vector space R, the subspaces F' and H given by
F={(z,y,2) eR*/z+y—2=0} and H={(z,y,2) eR*/z=y=0}.

We have F +G = F @& G. Indeed :
Let (x,y,2) € FNH, so (v,y,2) € F, i.e. z=x+y and (v,y,2) € H i.e. x =y =0, so
r=y=2z=0, therefore F N H = {Ogs} .

Example 1.2.3 For any vector space E, there are two trivial subspaces in E, namely, E itself
is a subspace of E and the set consisting of the zero vector F' = {0}is a subspace of E.

There is one particular way to generate a subspace of any given vector space E using the
span of a set of vectors.

2 Linear combinations, generating famillies, linearly inde-
pendant famillies, bases, dimension.

2.1 Linear combinations

Let vi,vq, -+ ,v, be a familly of vectors of a vector space on K, We call linear combination
of these vectors any vector of type

V= AU+ AUy + - - + AUy,

The scalars Ay, --- , N\, are called the coefficients of the linear combination.
The span of {vi,vq,- - ,v,} is the set of all linear combinations of vy, vy, -+, Uy.

span {vy,va, -+ v} = {\vr + Agva + -+ A/ Ap, o A, €R}

The span of a set of vectors in E is a subspace of E.

2.2 Generating famillies

Definition 2.2.1 The family {vi,ve, -+ ,v,} is a generating family of the vector space E if
every vector of E is a linear combination of the vectors vy, vy, - -+ ,v,. This can also be written :

\V/UEE, 3)\1,)\2,"'7>\n€K/ U:/\1U1—|—>\2U2+"’+>\nvn
We also say that the family {vi,vq, -+ ,v,} generates the vector space E and we write

E = span {vy, v, - v, }
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Ezample 2.2.1 Let the vectors v; = (2,1),v, = (1,1) € R? The vectors {vi,va} form a
generating family of R?. Indeed, let v = (z,y) € R?, showing that v is a linear combination
of v1 and vy is equivalent to demonstrate the existence of two real numbers o and B such that
v = avy + Puy. So we need to study the existence of solutions to the system :

20+ ==
a+p=y
Its solutions are o« = x —y and = —x + 2y, whatever the real numbers x and y.

This proves that there can be several different finite families, not included in each other, gene-
rating the same vector space.

Exzample 2.2.2 Let E = R, [X] be the vector space of polynomials of degree < n. Then the
polynomials {1, X,--- . X"} form a generating family of E.
2.3 Linearly independent famillies

Definition 2.3.1 1. A familly {vy,ve,--- ,v,} of vectors of a vector space E is linearly inde-
pendent if the only linear combination of these vectors equal to the zero vector is the one whose

coefficients are all zero. We also say that vectors {vy, vy, -+ ,v,} are linearly independent.
This can be expressed as :
{v1,v9, - ,v,} is a linearly independent familly is equivalent to :

(()\1,"' 7)\n) e K"and )\1U1+>\2U2+"'+/\n7]p:0E) :>)\1 :>\2: :)\n:O

2.4 Linearly dependent famillies

Definition 2.4.1 1. A non linearly independent familly is called a linearly dependent familly.
We also say that vectors {vy,ve, - ,v,} are linearly dependents.
This can be expressed as : {vi,vq, -+ ,v,} is a linearly dependent familly is equivalent to

(3()\1, s ,)\n) € K"® — {OKn}/ )\11}1 + )\21)2 + -+ )\nvp = OE) .

Exzample 2.4.1 The polynomials P(X) = 1 — X, P(X) = 5+ 3X — 2X? and P3(X) =
143X — X2 form a linearly dependent family in the vector space Ry [X], because 3P (X) —
Py(X) + 2P5(X) = 0.

Exzample 2.4.2 In the vector space F (R,R) of functions from R into R, consider the family
{cos,sin}. Let’s show that it’s a linearly independent family.

Suppose we have \cos+pusin = 0, which is equivalent to Vo € R, Acos(x) + psin(z) = 0. In
particular, for x = 0, this equality gives A = 0. And for x = 7/2, it gives p = 0. So {cos,sin}
18 a linearly independent family.

On the other hand, the family {COSQ, sin? 1} is linearly dependent because we have : cos® + sin® —1
0.

The coefficients of the linear dependence are Ay = 1, Ao = 1, \3 = —1.

Ezample 2.4.3 In the vector space R* defined over the field R, consider the following vectors :
v1 = (1,0,—1,1),v5 = (0,1,1,0),v3 = (1,0,0,1),v4 = (0,0,0,1),v5 = (1,1,0, 1).
The set {vy,vq,v3,v4} is linearly independent (to be verified). The set Sy = {vy,va,v5} is linearly

dependent (vs = vy + v9).
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Theoreme 2.4.1 Let E be a vector space over the field K. A set F' = {vy,vq, -+ ,v,} of n
vectors of E, (n > 2) is linearly dependent if and only if at least one of the vectors of F' is a
linear combination of the other vectors of F.

Remark 2.4.1 1. Any family containing a linearly dependent family is linearly dependent.
2. Any family included in a linearly independent family is linearly independent.
3. {v} is linearly independent if and only if v # 0.

4. Any set containing the null vector is linearly dependent.

2.5 Basis
A basis of a vector space is linearly independent generating famailly.
If B = (2;);c;,1 C Nis abasis of E, then any x € E is uniquely written as a linear combination

of elements of B.
Tr = Z ;5
iel

The scalars (o) are called the coordinates of x in the basis B.

IS

3 Finite dimensional vector spaces

Definition 3.0.1 If a vector space is spanned by a finite number of vectors, it is said to be
finite-dimensional.

Otherwise it is infinite-dimensional. The number of vectors in a basis for a finite-dimensional
vector space E is called the dimension of E and denoted dimFE.

By convention, we say that {Og} is a finite-dimensional space.

Definition 3.0.2 A family {vy,--- ,v,} of vectors of E is said to be a basis of E if and only
if, we have :

1. {vy, -+ ,v,} is a linearly independent family of E and

2. {v1, -+ ,v,} is a generating family of E.

Example 3.0.1 1. The set (1,1) is a basis of the R—vector space C.

Indeed, if a,b € R are such that a.14+b.i = 0 then a+1ib = 0+1i0 and therefore a = b = 0.
The set is therefore linearly independent.
For any complex number, there are a,b € R such that z = a+ib, then (1,7) is a generating
set of C, 1t is therefore a basis of C.

2. In R3, the set {e; = (1,0,0),e5 = (0,1,0),e3 = (0,0,1)} forms a basis of R3, called ca-
nonical basis of R3.
The set {vy = (1,0,1),v9 = (1,—1,1)v3 = (0,1,1)} is a basis of R®. Indeed :

a/ The family is linearly independent.
Let aq, as, a3 € R such that aqvy + asvg + agvs = Ogs. Then

a1 + 0 =0
Qg + O3 =0
(11+O[2+O[3 =0
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which leads to oy = ay = a3 = 0.
b/ The set is generating of R3. Let (x,y,z) € R3. We are looking for ayi,as, a3 € R such
that (x,y, z) = agv; + ave + azvs. We then obtain the system

a1 + o =X
Qg + (3 =y
apt+oas+az =z
and we find oy =2x +y — z,a0 =x —y+ 2 and ag = —x + 2.
So span{v; = (1,0,1),v3 = (1, —1,1),v3 = (0,1,1)} = R3. Then {vy, ve, v3} is a basis of

R3.
More generally, we have :
Proposition 3.0.1 Canonical base of K"
Consider the vector space E = K" over the field K.
The standard basis vectors of E are a specific set of basis vectors that are commonly used in
linear algebra. They are the unit vectors in each dimension of the vector space :
(e1,€2, -+ ,en) of K" called canonical and given by :
€1 = (170707'“ 70)762 = <07170707”' 70)7”' y En = <070707071)

Proposition 3.0.2 Canonical base of K,, [X]
Let n € N. Consider the vector space E =K, [X] of polynomials of degree < n with coefficients
in K. There is a specific basis of K, [X] called canonical, given by {1, X, X? --- X"},

Theoreme 3.0.1 Theorem of the extracted basis From any finite generating family of E,
we can extract a basis of E. In particular, a finite-dimensional space admits a basis.

Theoreme 3.0.2 Incomplete basis theorem If E is finite-dimensional, then any linearly
independent family of E can be completed into a basis of E. To complete it, simply consider
certain vectors of a generating family of E.

Theoreme 3.0.3 Dimension If F is finite-dimensional, then all bases of E have the same
number of vectors (dimension of E).
Corollary 3.0.1 If E is a finite-dimensional vector space (dimE = n) and if B = (v1,vq, -+ ,vp)
18 a family of n vectors of E, then the following conditions are equivalent :

1. B s linearly independent.

2. B is a generating set of E.

3. B is a basis of E.

Remark 3.0.1 1. In particular, in a n-dimensional space, a linearly independent set al-
ways has at most n elements, and a generating family always has at least n elements.

2. If E and F are finite-dimensional, then dim(E x F) = dim(E) + dim(F). In particular,
dim(K") = n.
3. dim(K, [X]) =n+ 1.
Definition 3.0.3 If (v1,va, -+ ,v,) is a finite set of E, we call rank of (vi,vq,-- ,v,) the
dimension of F' = Vect (v, v, ,0y) .
Let G = {v; = (2,1),v9 = (4,2),v3 = (—3,4)} be a subset of R?. Let’s determine the rank
of G.

The set G is linearly dependent (vy = 2v1), so span (v, v, v3) = span (vy, v3), so rank(G) = 2.
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3.1 Subspaces and dimension

If E is a finite-dimensional vector space and if F' is a subspace of E, then we have dim(F) <
dim(E) and Furthermore :

dim(F)=dim(E) < F =E.

Grassmann formula : Let E be a finite-dimensional vector space and let F, G be two subspaces
of E. Then

dim(F + G) = dim(F) + dim(G) — dim(F N G).

In particular, F' and G are in direct sum if and only if

dim(F + G) = dim(F) + dim(G).
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