FINAL EXAM ANSWERS

Exercise 1 Are the following statements true or false? Justify your answers.

1. (T). Suppose that $\left(\forall n \in \mathbb{N}^{*}, \exists p \in \mathbb{N}^{*}: n=p^{2}\right) \wedge\left(\exists q \in \mathbb{N}^{*} / \quad 2 n=q^{2}\right)$.

Let $n \in \mathbb{N}^{*}, \quad n=p^{2}$ and $q^{2}=2 n$, then $2 p^{2}=q^{2}\left(p, q \in \mathbb{N}^{*}\right)$, i.e. $\sqrt{2}=\frac{p}{q} \in \mathbb{Q}$ contradiction $(\sqrt{2}$ is an irrational number).
2. (F). The relation \mathcal{R} defined by: $x \mathcal{R} y \Leftrightarrow \cos ^{2} x+\sin ^{2} y=1$ is not anti-symmetrical.

We have $0 \mathcal{R} 2 \pi$ and $2 \pi \mathcal{R} 0$ but $0 \neq 2 \pi$.
3. $(T) .(x \mathcal{R} y \Leftrightarrow x-y$ is a multiple of 5$), \overline{2024}=\overline{2020} \overline{+} \overline{4}=\overline{0} \bar{\mp}=\overline{4}$ and $3 \notin \overline{4} s o \overline{3} \cap \overline{4}=\emptyset$.
4.
a/ (T). Let $x \in B \subset A \cup B \subset A \cup C$, then $x \in A \vee x \in C$.
If $x \in A$ (and $x \in B$) then $x \in A \cap B \subset A \cap C$ then $x \in C$.
So $(\forall x \in B, \quad x \in C)$ which implies that $B \subset C$.
$b /(F)$. For example : $A=\{0\}, B=\{0,1\}$ and $C=\{1\}$.
Exercise 2 Consider the map $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by : $f(x)=\sqrt{1+x^{2}}$.
1.

$$
\begin{array}{rll}
f^{-1}(\{0\}) & =\{x \in \mathbb{R} / & f(x) \in\{0\}\} \\
& =\{x \in \mathbb{R} / & f(x)=0\} \\
& =\{x \in \mathbb{R} / & \left.x^{2}=-1\right\}=\emptyset . \\
f^{-1}(\{2\}) & =\{x \in \mathbb{R} / & f(x)=2\} \\
& =\{x \in \mathbb{R} / & \left.\sqrt{1+x^{2}}=2\right\} \\
& =\left\{x \in \mathbb{R} / x^{2}=3\right\} \\
& =\{-\sqrt{3}, \sqrt{3}\} .
\end{array}
$$

$f(\{-\sqrt{3}, 0, \sqrt{3}\})=\{f(x) / \quad x \in\{-\sqrt{3}, 0, \sqrt{3}\}\}$.
We have: $f(-\sqrt{3})=f(\sqrt{3})=2$ and $f(0)=1$. So
$f(\{-\sqrt{3}, 0, \sqrt{3}\})=\{1,2\}$.
2. We have: $f(-\sqrt{3})=f(\sqrt{3})=2$ but $-\sqrt{3} \neq \sqrt{3}$ then the map f is not injective.
3. $f^{-1}(\{0\})=\emptyset$, then $\nexists x \in \mathbb{R} / \quad f(x)=0$, then the map f is not surjective.
4. Let \mathcal{R} the binary relation defined by : $\forall x \in \mathbb{R}, \quad x \mathcal{R} y \Leftrightarrow f(x)=f(y)$.
a/ \mathcal{R} is an equivalence relation :

- \mathcal{R} reflexive $: \forall x \in \mathbb{R}, \quad f(x)=f(x)$.
- \mathcal{R} symmetrical : $\forall x, y \in \mathbb{R}, \quad f(x)=f(y) \Rightarrow f(y)=f(x)$.
- \mathcal{R} transitive $: \forall x, y, z \in \mathbb{R},(f(x)=f(y)) \wedge(f(y)=f(z)) \Rightarrow f(x)=f(z)$. b/

$$
\begin{aligned}
\overline{\sqrt{2}} & =\{x \in \mathbb{R} / \quad x \mathcal{R} \sqrt{2}\} \\
& =\{x \in \mathbb{R} / \quad f(x)=f(\sqrt{2})\} \\
& =\left\{x \in \mathbb{R} / \quad 1+x^{2}=3\right\} \\
& =\{-\sqrt{2}, \sqrt{2}\} .
\end{aligned}
$$

5. Let the map $g:\left[0,+\infty\left[\rightarrow\left[1,+\infty\left[\right.\right.\right.\right.$ defined by $g(x)=\sqrt{1+x^{2}}$.
a/ g is a bijection : $\forall y \in\left[1,+\infty\left[, \exists!? x \in\left[0,+\infty\left[/ \quad y=\sqrt{1+x^{2}}\right.\right.\right.\right.$.
We have $y=\sqrt{1+x^{2}} \Rightarrow x^{2}=y^{2}-1 \Rightarrow x= \pm \sqrt{y^{2}-1}$, but $-\sqrt{y^{2}-1} \notin[0,+\infty[$, then :
$\forall y \in\left[1,+\infty\left[, \exists\right.\right.$! (a unique) $x=\sqrt{y^{2}-1} \in[0,+\infty[/ \quad y=g(x)$. Then g is a bijection.
b/ $g^{-1}: \quad[1,+\infty[\rightarrow[0,+\infty\}$
$x \longmapsto \quad g^{-1}(x)=\sqrt{x^{2}-1}$
Exercise 3 On the set $G=\mathbb{R} \backslash\{-1\}$, consider the following composition law :

$$
x * y=x y+x+y
$$

1. $x * y \neq-1$, for all $x, y \in G$:

Suppose that $x * y=-1$, then $x y+x+y=-1$ i.e. $x(y+1)=-(y+1) \Rightarrow x=\frac{-(y+1)}{y+1}, \quad y \neq-1$ then $x=-1$ contradiction with $x \in \mathbb{R} \backslash\{-1\}$.
2. G is an abelian group :
i/ The law (*) is commutative : $\forall x, y \in G, \quad x * y=x y+x+y=y x+y+x=y * x$.
ii/ The law (*) is associative : $\forall x, y, z \in G, \quad(x * y) * z=(x y+x+y) * z=(x y+x+y) z+(x y+x+y)+z=$ $x y z+x z+y z+x y+x+y+z=x(y z+y+z)+x+(y z+y+z)=x(y * z)+x+(y * z)=x *(y * z)$.
iii/ \exists ? $e \in G / \quad \forall x \in G, x * e=e * x=x$. (*) is commutative then we simply find $e \in G$ such that $x * e=x$ so $x e+x+e=x \Leftrightarrow e(x+1)=0, \quad x \neq-1$ then $e=0$.
iv/ $\forall x \in G, \exists ? x^{\prime} \in G / \quad x * x^{\prime}=x^{\prime} * x=e=0 .(*)$ is commutative then, $\forall x \in G$, we simply find $x^{\prime} \in G$ such that $x * x^{\prime}=0$ so $x x^{\prime}+x+x^{\prime}=0 \Leftrightarrow x^{\prime}(x+1)+x=0 \Rightarrow x^{\prime}=\frac{-x}{x+1}$ with $x \neq-1$
3. Let $H=\{x \in \mathbb{R}, \quad x>-1\}$. $(H, *)$ is a subgroup of $(G, *)$:
i/ $(e=0)>-1$ then $0 \in H$.
ii/ $\forall x, y \in H, x * y \in$? H.
We have $x, y \in H \Leftrightarrow x>-1$ and $y>-1$ then $x * y=x y+x+y=x(y+1)+(y+1)-1=(x+1)(y+1)-1>-1$, since $(x+1)(y+1)>0$. Then $x * y \in H$.
iii/ $\forall x \in H(x>-1), \quad x^{-1} \in ? H$.
We have $x^{-1}=\frac{-x}{x+1}>-1 \Leftrightarrow \frac{-x}{x+1}+1>0$. Then $\frac{-x}{x+1}+1=\frac{-x}{x+1}+\frac{x+1}{x+1}=\frac{1}{x+1}>0$ since $x>-1$.
4. Let $f:(G, *) \rightarrow(R \backslash\{0\}, \cdot)$ be the application defined by $f(x)=x+1$.
a/ We have $\forall x, y \in G, \quad f(x * y)=f(x y+x+y)=(x y+x+y)+1=(x+1) \cdot(y+1)=f(x) \cdot f(y)$. Then f is an homomorphism of groups.
5. We show by induction that

$$
\forall n \geq 2, \quad \underbrace{x * x * \cdots * x}_{n \text { times }}=(x+1)^{n}-1
$$

a/ Base case :For $n=2$, we have : $(x * x)=x^{2}+x+x=(x+1)^{2}-1$.
b/ Inductive step : Assume that $\underbrace{x * x * \cdots * x}_{n \text { times }}=(x+1)^{n}-1$ and show that $\underbrace{x * x * \cdots * x}_{(n+1) \text { times }}=(x+1)^{n+1}-1$.
We have :

$$
\begin{aligned}
\underbrace{x * x * \cdots * x}_{(n+1) \text { times }} & =\underbrace{x * x * \cdots * x * x}_{n \text { times }} \\
& =\left((x+1)^{n}-1\right) * x \\
& =\left((x+1)^{n}-1\right) x+\left((x+1)^{n}-1\right)+x \\
& =(x+1)^{n} \cdot x-x+(x+1)^{n}-1+x \\
& =(x+1)^{n} x+(x+1)^{n}-1=(x+1)^{n} \cdot(x+1)-1 \\
& =(x+1)^{n+1}-1 .
\end{aligned}
$$

