Groups, rings and fields

H.C
12 décembre 2023

1 Groups, rings and fields

1.1  Groups
1.1.1 Definitions and Examples
Definition 1.1.1 A group is a set G which is CLOSED under an operation * (that is, for
any x,y € G,x xy € G) and satisfies the following properties :
1. (Associativity) For all x,y,z € G, (x*y) x z = x % (y * 2),
2. There exists an element e € G such that :
a/ (Identity) Ve € Giexx =x*xe=2x; and
b/ (Inverses)Vx € G,3x" € G such that x 2’ = 2’ x v = e.

If in addition the following holds :
Commutativity : x xy = y*x for all x,y € G, then (G, *) is called an abelian group, or
simply a commutative group.

Remark 1.1.1 if (G,x*) is a group then the identity e is unique and the inverse of any x in G
18 uniquely determined by x.

Example 1.1.1 1. (Z,+),(Q,4), (R, +) and (C,+) are abelian groups (e =0, ' = —x).
2. (Q\{0},-), R\ {0},-),(C\ {0},-) are abelian groups (e =1, o' =1)
3. (Z,-) is not a group.
4. (N,+) is not a group.
5

. bijections on a set E.
Fiz a non-empty set E and let

B(E,E)={f:E— E/ fis a bijection },

and let 7 o” denote composition of maps.

a/ (B(E,E),o) is a group that is not abelian.
Indeed, let E =R, we consider the following applications :

f: R—- R and
xr— 2z
g: R— R

s 1— 1. Then fog+# go f.
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6. Let R be the set of rotations of the plane whose center is at the origin O.
Then for two rotations Ry and R, the composite Ry o R, is still a rotation with center
the origin and angle 0 + . Thus (R,o) forms a group (which is even commutative).
For this law the identity is the rotation of angle 0 (it is the identity of the plane). The
wverse of a rotation Ry is the rotation R_y

7. For any natural number n, the set G = Z/nZ of equivalence classes modulo n defined by
VeeZ, Te€lZnZ<z={yecZ/ y—xz=0nl}={yeZ/y—xecnZ}.

We define the additive law denoted + as follows

VZ,y € Z/nl, T+Y=1x+y.

(Z)nZ,+) is an abelian group. Indeed :

a/ G is closed under +, since x +y € Z and therefore vt +y=x+y € Z/nZ = G.
b/ + is associative, since VT,y,z € Z/nZ,

T+y)+z = (z+y) +z
= (r+y)+z

S LT

= T+ (y+=z

T+ [@W+72).

—~
~—

¢/ Knowing that + is commutative in Z, the law + satisfies,
T+y=(r+y)=wy+2x)=G+T). which shows that + is commutative

d/ The identity element 0 given by :
T+0=2+0=T1.
is well defined, since 0 is the identity element of Z for the law +, and therefore O is the
identity element of G for the law +.

e/ For all x, we have
T+—z=2+(—2)=0,
since the symmetric of x in Z for the law + is —x. Thus, T admits as symmetric the
element —x for the law +.
Therefore, Z./nZ, is an abelian group.

For example in Z/60Z, we have31+46 = 31 + 46 = 77 = 60 + 17 = 60+ 17 = 0417 = 17.

Proposition 1.1.1 Let (G, %) be a group then

1. Ya,b € G the equation a x x = b (respectively x * a = b) admits a unique solution in
G, x=a'b (respectively x =bx*a1).

2. Ya,b,c € G such that
axb=axc (respectively b* a = c* a) we have b = c.
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1.2 Subgroups

Definition 1.2.1 Let (G, %) be a group. We say that a non-empty part H of G is a subgroup
of G if (H,x) is itself a group.

Proposition 1.2.1 Let G be a group, with identity e, and H a part of G, then the following
properties are equivalent :

1. H is a subgroup of G,
2. e € H andVx,y € H we have x xy~' € H.

Remark 1.2.1 G and {e} are so-called trivial subgroups of G.
Théoréme 1.2.1 Additive subgroups of Z are of the form nZ, where n is a positive integer.

Proof 1.2.1 Forn =0, {0} = 0Z is, by the previous remark, a subgroup of Z.
Let H=nZ, n > 0. S0 we have

a/ 0=n.0 €nZ,

b/ Let x,y € H, then 3k, € Z such that x = nk and y = nl. Thus, y~' = —y = n(-1) and
we have
z+ (—y) =nk+n(—=l) =n(k —1) € nZ.

Which shows that H = nZ s a subgroup of Z.

Théoréme 1.2.2 Let G be a group and (H;),.; a family of subgroups of G, then NicrH; is a
subgroup of G.

Proof 1.2.2 Given that Vi, H; is a subgroup of G, then e € H; Vi.
Thus, e € NjerH; On the other hand, Vx,y € NierH; we have x,y € H; for all i € I, and H; a
subgroup of G, then Vi € I we have x xy~* € H;. Which leads to x x y=' € Nier H;.

Remark 1.2.2 The union of subgroups is not a subgroup.

Indeed, consider Hy = 3Z and Hy = 5Z two subgroups of Z. If H; U Hy was a subgroup, then
8 =3+ 5 € Hy; U Hy which is impossible since 8 ¢ H; and 8 ¢ H,.

Let us give in what follows a necessary and sufficient condition for the union of subgroups to
be a subgroup.

Théoréme 1.2.3 Let Hy and Hy be two subgroups of a group G. Hy U Hy is a subgroup of G
if and only if Hy C Hy or Hi C H, .

1.3 Group homomorphisms

Given two groups (G, x) and (G’, T) two respective groups of identities elements e and ¢’

Definition 1.3.1 We call homomorphism groups G and G' any map [ : G — G’ verifying
flaxb) = f(a)Tf(b), Va,beqG.

If moreover G = G', f is said to be an endomorphism of G.
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Example 1.3.1 1. let G = G' =R be an additive group and let
the map f:R — R/ f(x)=2x. We have : Vx,y € R

flx+y)=2(x+y)=2v+2y = f(z)+ f(y)

f is therefore an homomorphism of groups.
2. Consider the application
RS> R?  f(r,y,2) = (v +y,y — 2) where R*R3 are considered additive groups.
Let X = (x,y,2) and X' = (2,4, 2') € R3, then
fX+X) = f(@+ay+y,2+2))
(z+2)+(y+y). +y)— (= +2))
= (z+y)+ @ +y),y—2)+W —-2))=(@+y,y—2)+ @ +y,y — 2
= f ((ZL’, Y, Z)) + f ((l’/, y/’ Z,)) :
Proposition 1.3.1 Let f: G — G’ be a homomorphism of groups, then
1. f(e)=r¢.
2 (fla) = (f(x))™", Vzeq,

Proof 1.3.1 Since f is an homomorphism, then f(a*b) = f(a)T f(b),Va,b € G. Then :
1. we have : f(e) = f(exe) = f(e)T f(e),withf(e) € G', then f(e) = €.

2. Like € = f(e) = flxxx™t) = f(x)Tf(x™!),Vo € G, then f(z™') is the symmetric of
f(x) for the operation T. Thus f(z~') = (f(z)) "

Example 1.3.2 Let’s take the example of the function f: R — R% defined by f(x) = exp(z).
We indeed have f(0) =1 : the identity of (R,+) has as its image the identity of (R ,.).

For x € R its inverse in (R, +) is here its opposite —z, then f(—z) = exp(—z) = wpl@) = ﬁ
is indeed the opposite (in (R%,.) of f(x).

Proposition 1.3.2 1. Let two morphisms of groups f : G — G' and g : G' — G”. Then
go f:G — G” is a morphism of groups.

2. If f: G — G is a bijective morphism then f~': G' — G is also a group morphism.

Proof 1.3.2 The first part is easy. Let’s show the second part :
Let y,y/ € G'. Since f is bijective, there exists x,x' € G such that f(x) =y and f(2') =y .
Then f~=H(yTy') = f~H (f(@)Tf(@") = f7 (f(z x2')) = wxa’ = f~H(y) = f(y). And therefore

f~1 is a morphism from G’ to G.

Definition 1.3.2 A bijective morphism is an isomorphism, if in addition G = G', we say
that f is an automorphism.
Two groups G, G’ are isomorphic if there exists a morphism bijective f : G — G'.

Example 1.3.3 Still continuing the example f(x) = exp(x), f:R —= R% is a bijective map.
Its reciprocal bijection f~' : R — R is defined by f~(z) = In(z).

According to the proposition above, f~' is also a morphism from (R%, x) to (R,+) so
fHaxa") = f~Yx)+ f~1(2'), what is expressed here by the well-known formula : In(x x ') =
In(x) + In(2"). Thus fis an isomorphism and the groups (R*, x) and (R, +) are isomorphic.
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1.4 Kernel and image

Let f : G — G’ be a group morphism. We define two important subsets which will be
subgroups.

Definition 1.4.1 The kernel of f is
Kerf={re G/ f(z)=ex=2¢}.

So it’s a subset of G. In terms of reciprocal image we have by definition Kerf = f~! ({¢'})
(Attention, the notation f~! here denotes the reciprocal image, and does not mean that
f is bijective.)

Definition 1.4.2 The image of f is

Imf = {f(x)] ©€G}.
It is therefore a subset of G’ and in terms of direct image we have Imf = f(G).

Proposition 1.4.1 Let f : G — G’ be a group morphism.
1. Kerf is a subgroup of G.
2. Imf is a subgroup of G'.
3. f is injective if and only if Kerf = {e}.
4. [ is surjective if and only if Imf = G'.
Example 1.4.1 Consider the following homomorphism :
[ R R% f(r,y) =(x+y,z—vy).
SO
kerf ={(z,y)/ [flz,y)=(0,0)},

flz,y) =(0,0) x+y=0 and z—y =0, thusx =y =0, therefore
kerf ={(0,0)}.

So according to the proposition above f is injective.

We have (X,Y) € R?, suchthat(X,Y) = f(z,y) = (v + y,z — y),

therefore x = %X + %Y and y = %X — %Y.

This system admits a unique solution (X,Y) for each value of (x,vy), therefore Imf = R?, and
f s surjective.

2 Rings

2.1 The definition of a ring.

Let 4+ and - be two binary operations defined on a non-empty set A.
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Definition 2.1.1 A structure (A, +,-) is a ring if we have the following properties :

1. Addition :
(A, +) is an abelian group :

a/ Associativity.
b/ Zero : there exists 0 € A such that for all a € A we have a+0 =0+ a = a.

¢/ Inverses : for any a € A there exists —a € A such that a + (—a) = (—a) +a = 0.
Commutativity : for all a,b € A we have a +b = b+ a.

2. Multiplication :
The law " -7 is associative : for all a,b,c € A we have a-(b-c) = (a-b) - c.

3. Addition and multiplication together.
For all a,b,c € A,

a-(b+c)=a-b+a-c et (b+c)-a=b-a+c-a.

We sometimes say A is a ring, taken it as given that the ring operations are denoted ” +” and
7.7 As in ordinary arithmetic we shall frequently suppress - and write ab instead of a - b. We
do NOT demand that multiplication in a ring be commutative.

Notation : subtraction and division We write a — b as shorthand for a + (—b) and a/b as
shorthand for a - (1/b) when 1/b exists.

Remark 2.1.1 1. If furthermore there exists 14 € A such that a-14 =14-a = a,Va € A,
we say that (A, +,-) is a unit ring.

2. If the law” -7 is commutative, A is called a commutative ring.

Considérations.

1. In the following, the rings considered are unitary.

2. We define a” for n € N as follows : " ={ «a if n=1
a-a-+---a (n times) if n>2

Examples of rings.

Number systems
1. All of Z,Q,R and C are commutative unit rings with identity 1.

2. Nis NOT a ring for the usual addition and multiplication. These are binary operations
and we do have a zero element, namely 0.
The existence of additive inverses fails : there is no n € N for which 1 +n = 0, for
example.

3. Consider the set of even integers, denoted 2Z, with the usual addition and multiplication.
This is a commutative ring without an identity. To verify that this condition (of identity)
fails it is just to say that the integer 1 does not belong to 2Z.

Instead we argue as follows. Suppose for contradiction that there were an element e € 27
such that n - e = n for all n € 2Z. In particular 2¢ = 2, from which we deduce that e
would have to be 1. Since 1 ¢ 2Z we have a contradiction.
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4. Let A=C([0,1],R) ={f:[0,1]/ f continue}.
We define on A the following operations : 7 + 7,7 .7
f+g: [0,1] >R f-g: [0,1]] =R
z = (f+9)(x) = f(z) + g(2). z = (f-9)(@) = fz)-g(x).
We check that (A, +,-) is a commutative ring. The identity element for the addition ” 4+ 7 is
the function :

0: [0,1]] >R . . e e .
1+ 0(x) = 0. And the identity element 14 for multiplication, is the function :
la: [0,1] =R

T — 1A(x) = 1.

Calculational rules for rings

Proposition 2.1.1 Let (A, +,-) be a ring, then we have :
1.Yae A, O0-a=a-0=0,
2. Ya,be A, a-(=b)=(—a-b),
3. Ya,b,ce A, a-(b—c)=a-b—a-c,

4. Assume in addition that” -7 is commutative, then ¥Yn € N et Va,b € A, we have :

(a+b)" ZC,? Fopnk, binome of Newton.

Proof 2.1.1 Let 0 denote the identity element of the first law” +7 of A.
1. By distributivity of 7 -7 with respect to” +7 we have

0-a=(0+4+0)-a=0-a+0-a
Since (A, +) is a group, we can simplify on the left and right by 0-a, which gives 0 = 0-a.

Similarly, if we writea-0=a-(0+0)=a-04a-0, we obtain a-0 =0

2. Since0=a-0=a-(b+(=b)), then 0 =a-b+a-(—b), which shows that a-(—b) is the
inverse of a-b. Thus, a - (—b) = —ab.

3. Since b—c=b+ (—c) then
a-(b—c)=a-(b+(-¢c)=a-b+a-(—c)=a-b—a-c

4. To demonstrate Newton’s binomial, we’ll adopt reasoning by induction.

a/ Forn =0, we have (a+b) -0 =14 =CJ - at".

b/ We assume that (a +b)" = > ,_,Cra® - b"* and show that :

n+1
(& + b n+1 ch+lak bn+1 k Cn+1bn+1_'_cn+1a bn+cn+1a2 p 1+ +Cn+1 nb_i_cgj_llarwrl.
k=0

Since (a+b)"" = (a+b)(a+b)"=a-(a+b)"+b-(a+b)" then

ala+b)" =Cla-b" +Cra® - 0"+ Cya® b2 4+ CV b+ C
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and

bla+b)" =C-b" T 4+ Clba - b+ Cyba® - b2 -+ Cba™ D + CRba™,

On the other hand we have ba*b' = a*b="*1 since ™ -7 is commutative, and CI" +C7, =
Cgfll, by summing the two previous equalities we get :

(a+ b)"Jrl = Cgb"+1+(C6‘ +C)a-b"+(CT +C3) RRY/ I (C,’f_l + CZ) a”b+C§a"+1.
This leads to

(CL + b)n+1 _ Cg+1bn+1 + CIL—i—la . bn + C;—HCLQ X bn—l Cn+1 nb + C;Li—ll n+1

Hence the result.

Integral domain

Definition 2.1.2 An integral domain is a nonzero commutative ring A in which the product
of any two nonzero elements is nonzero i.e.
Va,be A, a-b=0=a=0 or b=0

Example 2.1.1 1. (A, +,) is an integral domain for A =7,Q,R and C.

2. For A =C([0,1],R) = {f:[0,1]/ f continue}. The ring (A,+,-) defined above is
not an integral domain. Indeed Consider the functions f and g in A given by
=1 if x¢€ 0,% e if xe€ O,%
J@) =1 if we %,1{ 9@ =1 i1 i we L]
We can see that f # 0 and g # 0 but f-g = 0 since forallz € [0, 1] we have f(x)-g(x) = 0.

2.2 Subrings and the Subring Test.

Let (A,+,-) be a ring and let A" be a non-empty subset of A. Then (A’,+,-) is a subring
of A if it is a ring with respect to the operations it inherits from A.

The Subring Test

Let (A,+,) be aring and let A’ C A. Then (A, +,-) is a subring of A if (and only if) A’ is
non-empty and the following hold :

1. (A, +) is an abelian subgroup of (A, +),

2. Va,be Ala-be A,

Example 2.2.1 1. Z and Q are subrings of R,
2. R, regarded as numbers of the form a + 0i for a € R, is a subring of C.

3. In the polynomial ring R|x], the polynomials of even degree form a subring but the poly-
nomials of odd degree do NOT form a subring because x - x = 2% is not of odd degree.

4. nZ ={nk| k€ Z} is a subring of Z for any n € N.
5. The null ring is the ring {0} formed by a single element.
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Example 2.2.2 1. Let be the set Q[v2] = {a+bv2/a €Q, beQ}.

Q[v2] is a ring. We check that Q is a subring of Q[v/2] for usual addition and multipli-
cation.

2. The ring Z/nZ
Let’s fix an integer n > 2. Consider the additive group Z/nZ = {6, 1,--- ,m} . We've
already seen that the additive group Z/nZ is abelian. We define a multiplication in Z/nZ
from that in Z by posing : Ty = Ty for all T,y € Z/nZ. This multiplication is well
defined, regardless of the representatives chosen. It’s immediate to check that Z/nZ is a
unitary commutative ring.

2.3 Ring homomorphism

Definition 2.3.1 Let (A, +,-) and (B,+,-) be two rings of identities elements 14 and 1p
respectively and f : A — B be a map.
We say that f is a if Va,b € A we have

1. fla+0b) = f(a)+ f(b),
2. fla-b) = f(a)- f(b),
3. f(1A> - 1B-

If in addition f is a bijection, then its inverse =1 is also a ring homomorphism. In this case,
f is called a ring isomorphism, and the rings A and B are called isomorphic.
From the standpoint of ring theory, isomorphic rings cannot be distinguished.

3 Fields and integral domains

Definition of a field :
Definition 3.0.1 Let K a set, a structure (K, +,-), where + and - are binary operations on
K is a field if :

1. (K,+) is an abelian group. (Identity noted Ok.),

2. (K —{0},+) is an abelian group. (Identity noted 1k.),

3. The distributive laws hold (the” -7 is distributive with respect to + ).

Proposition 3.0.1 Let (K,+,-) be a ring.
(K, +,-) is a field if, and only if, every non-zero element of K is invertible, i.e. for all a € K
with a # 0 there exists 1/a € K (alternatively written a™) such that a-1/a=1/a-a = 1.

Definition 3.0.2 In a commutative ring we call an element a # 0 a zero divisor if there exists
b # 0 such that a-b=0.

A commutative ring with identity in which 0 # 1 is an integral domain (ID) if it has no zero
divisors.
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Examples of integral domains

1. We claim that any field is an integral domain. To prove this, assume that (K,+,-) is a
field and let a,b € K be such that a-b=0. If a # 0 then a™ ' exists, and we have

0=a'0=a""(a-b)=((a" a)-b)=1-b=b.

and likewise with the roles of a and b reversed.
2. Z and K[x] are integral domains which fail to be fields.

3. K?, with coordinatewise addition and multiplication is a commutative ring with identity
which fails to be an integral domain (and so is not a field) :

(0,1) - (1,0) = (0,0).

3.1 Subfield

If (K,+,) is a field, a sub-field of K is a sub-ring K' of K such that for any non-zero
element x of K', we have 7' € K',(K',+,) is then a field.

Example 3.1.1 1. Q,R et C are fields, but not Z (2 is not invertible).

2. Q[v2] is a subfield of R.
Proposition 3.1.1 Characterization of sub-fields Let (K,+,-) a field. A non-empty part
K’ of K is a sub-field of K, if and only if

1. 1g € K’

2. Ve,ye K'y x—yeK'.

3. Ve,ye K's x-ye K.

4. VreK';, z'eK.
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