Groups, rings and fields

$\mathfrak{H.C}$

12 décembre 2023

1 Groups, rings and fields

1.1 Groups

1.1.1 Definitions and Examples

Definition 1.1.1 A group is a set G which is **CLOSED** under an operation * (that is, for any $x, y \in G, x * y \in G$) and satisfies the following properties :

- 1. (Associativity) For all $x, y, z \in G, (x * y) * z = x * (y * z),$
- 2. There exists an element $e \in G$ such that :
- a/ (Identity) $\forall x \in G, e * x = x * e = x$; and
- b/ (Inverses) $\forall x \in G, \exists x' \in G \text{ such that } x * x' = x' * x = e.$

If in addition the following holds :

Commutativity : x * y = y * x for all $x, y \in G$, then (G, *) is called an **abelian group**, or simply a commutative group.

Remark 1.1.1 if (G, *) is a group then the identity e is unique and the inverse of any x in G is uniquely determined by x.

Example 1.1.1 1. $(\mathbb{Z}, +), (\mathbb{Q}, +), (\mathbb{R}, +)$ and $(\mathbb{C}, +)$ are abelian groups (e = 0, x' = -x).

2. $(\mathbb{Q} \setminus \{0\}, \cdot), (\mathbb{R} \setminus \{0\}, \cdot), (\mathbb{C} \setminus \{0\}, \cdot)$ are abelian groups $(e = 1, x' = \frac{1}{x})$.

- 3. (\mathbb{Z}, \cdot) is not a group.
- 4. $(\mathbb{N}, +)$ is not a group.
- 5. bijections on a set E. Fix a non-empty set E and let

$$\mathcal{B}(E, E) = \{ f : E \to E / \text{ fis a bijection } \},\$$

and let " \circ " denote composition of maps.

 $\begin{array}{l} a/ \ (\mathcal{B}(E,E),\circ) \ is \ a \ group \ that \ is \ not \ abelian.\\ Indeed, \ let \ E = \mathbb{R}, \ we \ consider \ the \ following \ applications: \\ f: \ \mathbb{R} \to \ \mathbb{R} \\ x \longmapsto \ 2x \end{array} and \\ g: \ \mathbb{R} \to \ \mathbb{R} \\ x \longmapsto \ 1-x. \end{array} Then \ f \circ g \neq g \circ f. \end{array}$

- 6. Let \mathcal{R} be the set of rotations of the plane whose center is at the origin O. Then for two rotations R_{θ} and R_{α} , the composite $R_{\theta} \circ R_{\alpha}$ is still a rotation with center the origin and angle $\theta + \alpha$. Thus (\mathcal{R}, \circ) forms a group (which is even commutative). For this law the identity is the rotation of angle 0 (it is the identity of the plane). The inverse of a rotation R_{θ} is the rotation $R_{-\theta}$
- 7. For any natural number n, the set $G = \mathbb{Z}/n\mathbb{Z}$ of equivalence classes modulo n defined by

$$\forall x \in \mathbb{Z}, \quad \overline{x} \in \mathbb{Z}/n\mathbb{Z} \Leftrightarrow \overline{x} = \{ y \in \mathbb{Z}/ \quad y - x \equiv 0 \, [n] \} = \{ y \in \mathbb{Z}/y - x \in n\mathbb{Z} \}.$$

We define the additive law denoted \dotplus as follows

$$\forall \overline{x}, \overline{y} \in \mathbb{Z}/n\mathbb{Z}, \quad \overline{x} \dotplus \overline{y} = \overline{x+y}.$$

 $(\mathbb{Z}/n\mathbb{Z}, \dot{+})$ is an abelian group. Indeed :

a/G is closed under $\dot{+}$, since $x + y \in \mathbb{Z}$ and therefore $x \dot{+} y = \overline{x + y} \in \mathbb{Z}/n\mathbb{Z} = G$. $b/\dot{+}$ is associative, since $\forall \overline{x}, \overline{y}, \overline{z} \in \mathbb{Z}/n\mathbb{Z}$,

$$(\overline{x} + \overline{y}) + \overline{z} = \overline{(x+y)} + \overline{z}$$

$$= \overline{(x+y) + z}$$

$$= \overline{x+(y+z)}$$

$$= \overline{x} + \overline{(y+z)}$$

$$= \overline{x} + (\overline{y} + \overline{z})$$

- c/ Knowing that + is commutative in \mathbb{Z} , the law \dotplus satisfies, $\overline{x} \dotplus \overline{y} = \overline{(x+y)} = \overline{(y+x)} = (\overline{y} \dotplus \overline{x})$. which shows that \dotplus is commutative
- d/ The identity element $\overline{0}$ given by : $\overline{x} + \overline{0} = \overline{x} + \overline{0} = \overline{x}$. is well defined, since 0 is the identity element of \mathbb{Z} for the law +, and therefore $\overline{0}$ is the identity element of G for the law +.
- $\begin{array}{l} e/ \ \ For \ all \ x, \ we \ have \\ \overline{x} \dotplus -\overline{x} = \overline{x} + (-x) = \overline{0}, \\ since \ the \ symmetric \ of \ x \ in \ \mathbb{Z} \ for \ the \ law + \ is \ -x. \ Thus, \ \overline{x} \ admits \ as \ symmetric \ the \\ element \ \overline{-x} \ for \ the \ law \ \dot{+}. \\ Therefore, \ \mathbb{Z}/n\mathbb{Z}, \ is \ an \ abelian \ group. \end{array}$

For example in $\mathbb{Z}/60\mathbb{Z}$, we have $\overline{31} \div \overline{46} = \overline{31+46} = \overline{77} = \overline{60+17} = \overline{60} \div \overline{17} = \overline{0} \div \overline{17} = \overline{17}$.

Proposition 1.1.1 Let (G, *) be a group then

- 1. $\forall a, b \in G$ the equation a * x = b (respectively x * a = b) admits a unique solution in $G, \quad x = a^{-1}b$ (respectively $x = b * a^{-1}$).
- 2. $\forall a, b, c \in G$ such that a * b = a * c (respectively b * a = c * a) we have b = c.

1.2 Subgroups

Definition 1.2.1 Let (G, *) be a group. We say that a non-empty part H of G is a subgroup of G if (H, *) is itself a group.

Proposition 1.2.1 Let G be a group, with identity e, and H a part of G, then the following properties are equivalent :

1. H is a subgroup of G,

2. $e \in H$ and $\forall x, y \in H$ we have $x * y^{-1} \in H$.

Remark 1.2.1 G and $\{e\}$ are so-called trivial subgroups of G.

Théorème 1.2.1 Additive subgroups of \mathbb{Z} are of the form $n\mathbb{Z}$, where n is a positive integer.

Proof 1.2.1 For n = 0, $\{0\} = 0\mathbb{Z}$ is, by the previous remark, a subgroup of \mathbb{Z} . Let $H = n\mathbb{Z}$, n > 0. So we have

- $a/0 = n.0 \in n\mathbb{Z},$
- b/ Let $x, y \in H$, then $\exists k, l \in \mathbb{Z}$ such that x = nk and y = nl. Thus, $y^{-1} = -y = n(-l)$ and we have

 $x + (-y) = nk + n(-l) = n(k-l) \in n\mathbb{Z}.$

Which shows that $H = n\mathbb{Z}$ is a subgroup of \mathbb{Z} .

Théorème 1.2.2 Let G be a group and $(H_i)_{i \in I}$ a family of subgroups of G, then $\cap_{i \in I} H_i$ is a subgroup of G.

Proof 1.2.2 Given that $\forall i, H_i$ is a subgroup of G, then $e \in H_i \quad \forall i$. Thus, $e \in \bigcap_{i \in I} H_i$ On the other hand, $\forall x, y \in \bigcap_{i \in I} H_i$ we have $x, y \in H_i$ for all $i \in I$, and H_i a subgroup of G, then $\forall i \in I$ we have $x * y^{-1} \in H_i$. Which leads to $x * y^{-1} \in \bigcap_{i \in I} H_i$.

Remark 1.2.2 The union of subgroups is not a subgroup.

Indeed, consider $H_1 = 3\mathbb{Z}$ and $H_2 = 5\mathbb{Z}$ two subgroups of \mathbb{Z} . If $H_1 \cup H_2$ was a subgroup, then $8 = 3 + 5 \in H_1 \cup H_2$ which is impossible since $8 \notin H_1$ and $8 \notin H_2$. Let us give in what follows a necessary and sufficient condition for the union of subgroups to be a subgroup.

Théorème 1.2.3 Let H_1 and H_2 be two subgroups of a group G. $H_1 \cup H_2$ is a subgroup of G if and only if $H_1 \subseteq H_2$ or $H_1 \subseteq H_2$.

1.3 Group homomorphisms

Given two groups (G, *) and (G', \top) two respective groups of identities elements e and e'.

Definition 1.3.1 We call homomorphism groups G and G' any map $f: G \to G'$ verifying

$$f(a * b) = f(a) \top f(b), \quad \forall a, b \in G.$$

If moreover G = G', f is said to be **an endomorphism** of G.

Example 1.3.1 1. let $G = G' = \mathbb{R}$ be an additive group and let the map $f : \mathbb{R} \to \mathbb{R}/ \quad f(x) = 2x$. We have $: \forall x, y \in \mathbb{R}$

$$f(x+y) = 2(x+y) = 2x + 2y = f(x) + f(y).$$

f is therefore an homomorphism of groups.

2. Consider the application

 $f: \mathbb{R}^3 \to \mathbb{R}^2$, f(x, y, z) = (x + y, y - z) where $\mathbb{R}^2, \mathbb{R}^3$ are considered additive groups. Let X = (x, y, z) and $X' = (x', y', z') \in \mathbb{R}^3$, then

$$\begin{aligned} f(X+X') &= f\left((x+x',y+y',z+z')\right) \\ &= \left((x+x')+(y+y'),(y+y')-(z+z')\right) \\ &= \left((x+y)+(x'+y'),(y-z)+(y'-z')\right) = (x+y,y-z)+(x'+y',y'-z') \\ &= f\left((x,y,z)\right)+f\left((x',y',z')\right). \end{aligned}$$

Proposition 1.3.1 Let $f: G \to G'$ be a homomorphism of groups, then

1. f(e) = e'. 2. $(f(x^{-1})) = (f(x))^{-1}, \quad \forall x \in G.$

Proof 1.3.1 Since f is an homomorphism, then $f(a * b) = f(a) \top f(b), \forall a, b \in G$. Then :

- 1. we have : $f(e) = f(e * e) = f(e) \top f(e)$, with $f(e) \in G'$, then f(e) = e'.
- 2. Like $e' = f(e) = f(x * x^{-1}) = f(x) \top f(x^{-1}), \forall x \in G$, then $f(x^{-1})$ is the symmetric of f(x) for the operation \top . Thus $f(x^{-1}) = (f(x))^{-1}$.

Example 1.3.2 Let's take the example of the function $f : \mathbb{R} \to \mathbb{R}^*_+$ defined by f(x) = exp(x). We indeed have f(0) = 1: the identity of $(\mathbb{R}, +)$ has as its image the identity of $(\mathbb{R}^*_+, .)$. For $x \in \mathbb{R}$ its inverse in $(\mathbb{R}, +)$ is here its opposite -x, then $f(-x) = exp(-x) = \frac{1}{exp(x)} = \frac{1}{f(x)}$ is indeed the opposite (in $(\mathbb{R}^*_+, .)$ of f(x).

Proposition 1.3.2 1. Let two morphisms of groups $f : G \to G'$ and $g : G' \to G$ ". Then $g \circ f : G \to G$ " is a morphism of groups.

2. If $f: G \to G'$ is a bijective morphism then $f^{-1}: G' \to G$ is also a group morphism.

Proof 1.3.2 The first part is easy. Let's show the second part : Let $y, y' \in G'$. Since f is bijective, there exists $x, x' \in G$ such that f(x) = y and f(x') = y'. Then $f^{-1}(y \top y') = f^{-1}(f(x) \top f(x')) = f^{-1}(f(x * x')) = x * x' = f^{-1}(y) * f^{-1}(y')$. And therefore f^{-1} is a morphism from G' to G.

Definition 1.3.2 A bijective morphism is an **isomorphism**, if in addition G = G', we say that f is an automorphism.

Two groups G, G' are isomorphic if there exists a morphism bijective $f: G \to G'$.

Example 1.3.3 Still continuing the example f(x) = exp(x), $f : \mathbb{R} \to \mathbb{R}^*_+$ is a bijective map. Its reciprocal bijection $f^{-1} : \mathbb{R}^*_+ \to \mathbb{R}$ is defined by $f^{-1}(x) = ln(x)$.

According to the proposition above, f^{-1} is also a morphism from (\mathbb{R}^*_+, \times) to $(\mathbb{R}, +)$ so $f^{-1}(x \times x') = f^{-1}(x) + f^{-1}(x')$, what is expressed here by the well-known formula : $ln(x \times x') = ln(x) + ln(x')$. Thus f is an isomorphism and the groups (\mathbb{R}^*_+, \times) and $(\mathbb{R}, +)$ are isomorphic.

1.4 Kernel and image

Let $f: G \to G'$ be a group morphism. We define two important subsets which will be subgroups.

Definition 1.4.1 The kernel of f is

$$Kerf = \{x \in G / f(x) = e_{G'} = e'\}.$$

So it's a subset of G. In terms of reciprocal image we have by definition $Kerf = f^{-1}(\{e'\})$ (Attention, the notation f^{-1} here denotes the reciprocal image, and does not mean that f is bijective.)

Definition 1.4.2 The image of f is

$$Imf = \{f(x)/ \quad x \in G\}.$$

It is therefore a subset of G' and in terms of direct image we have Imf = f(G).

Proposition 1.4.1 Let $f: G \to G'$ be a group morphism.

- 1. Kerf is a subgroup of G.
- 2. Im f is a subgroup of G'.
- 3. f is injective if and only if $Kerf = \{e\}$.
- 4. f is surjective if and only if Imf = G'.

Example 1.4.1 Consider the following homomorphism : $f : \mathbb{R}^2 \to \mathbb{R}^2$, f(x, y) = (x + y, x - y). SO

 $kerf = \{(x, y) / f(x, y) = (0, 0)\},\$

 $f(x,y) = (0,0) \Leftrightarrow x + y = 0$ and x - y = 0, thus x = y = 0, therefore

 $kerf = \{(0,0)\}.$

So according to the proposition above f is injective.

$$Imf = \left\{ f(x, y) / \quad (x, y) \in \mathbb{R}^2 \right\}.$$

We have $(X, Y) \in \mathbb{R}^2$, such that (X, Y) = f(x, y) = (x + y, x - y), therefore $x = \frac{1}{2}X + \frac{1}{2}Y$ and $y = \frac{1}{2}X - \frac{1}{2}Y$. This system admits a unique solution (X, Y) for each value of (x, y), therefore $Imf = \mathbb{R}^2$, and f is surjective.

2 Rings

2.1 The definition of a ring.

Let + and \cdot be two binary operations defined on a non-empty set A.

Definition 2.1.1 A structure $(A, +, \cdot)$ is a ring if we have the following properties :

1. Addition :

(A, +) is an abelian group :

- a/ Associativity.
- b/ **Zero** : there exists $0 \in A$ such that for all $a \in A$ we have a + 0 = 0 + a = a.
- c/ *Inverses* : for any $a \in A$ there exists $-a \in A$ such that a + (-a) = (-a) + a = 0. Commutativity : for all $a, b \in A$ we have a + b = b + a.
- 2. *Multiplication :* The law " \cdot " is associative : for all $a, b, c \in A$ we have $a \cdot (b \cdot c) = (a \cdot b) \cdot c$.
- 3. Addition and multiplication together. For all $a, b, c \in A$,

$$a \cdot (b+c) = a \cdot b + a \cdot c \quad et \quad (b+c) \cdot a = b \cdot a + c \cdot a.$$

We sometimes say A is a ring, taken it as given that the ring operations are denoted "+" and " \cdot " As in ordinary arithmetic we shall frequently suppress \cdot and write ab instead of $a \cdot b$. We do NOT demand that multiplication in a ring be commutative.

Notation : subtraction and division We write a - b as shorthand for a + (-b) and a/b as shorthand for $a \cdot (1/b)$ when 1/b exists.

- **Remark 2.1.1** 1. If furthermore there exists $1_A \in A$ such that $a \cdot 1_A = 1_A \cdot a = a, \forall a \in A$, we say that $(A, +, \cdot)$ is a unit ring.
 - 2. If the law " \cdot " is commutative, A is called a commutative ring.

Considérations.

- 1. In the following, the rings considered are unitary.
- 2. We define a^n for $n \in \mathbb{N}$ as follows: $a^n = \begin{cases} 1_A & \text{if } n = 0 \\ a & \text{if } n = 1 \\ a \cdot a \cdots \cdot a & (n \text{ times}) & \text{if } n \ge 2 \end{cases}$

Examples of rings.

Number systems

- 1. All of $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$ and \mathbb{C} are commutative unit rings with identity 1.
- 2. N is NOT a ring for the usual addition and multiplication. These are binary operations and we do have a zero element, namely 0. The existence of additive inverses fails : there is no $n \in \mathbb{N}$ for which 1 + n = 0, for example.
- 3. Consider the set of even integers, denoted 2Z, with the usual addition and multiplication. This is a commutative ring without an identity. To verify that this condition (of identity) fails it is just to say that the integer 1 does not belong to 2Z.

Instead we argue as follows. Suppose for contradiction that there were an element $e \in 2\mathbb{Z}$ such that $n \cdot e = n$ for all $n \in 2\mathbb{Z}$. In particular 2e = 2, from which we deduce that e would have to be 1. Since $1 \notin 2\mathbb{Z}$ we have a contradiction.

4. Let $A = C([0,1], \mathbb{R}) = \{f : [0,1] / f \text{ continue}\}.$ We define on A the following operations : " + ", " · " $f + g : [0,1] \to \mathbb{R}$ $f \cdot g : [0,1] \to \mathbb{R}$ $x \mapsto (f + g)(x) = f(x) + g(x).$ $x \mapsto (f \cdot g)(x) = f(x) \cdot g(x).$

We check that $(A, +, \cdot)$ is a commutative ring. The identity element for the addition " + " is the function :

 $\begin{array}{ll} 0: & [0,1] \to \mathbb{R} \\ & x \mapsto 0(x) = 0. \end{array} \quad \text{And the identity element } 1_A \text{ for multiplication, is the function}:\\ 1_A: & [0,1] \to \mathbb{R} \end{array}$

$$x \mapsto 1_A(x) = 1.$$

Calculational rules for rings

Proposition 2.1.1 Let $(A, +, \cdot)$ be a ring, then we have :

- $1. \ \forall a \in A, \quad 0 \cdot a = a \cdot 0 = 0,$
- 2. $\forall a, b \in A, \quad a \cdot (-b) = (-a \cdot b),$
- 3. $\forall a, b, c \in A$, $a \cdot (b c) = a \cdot b a \cdot c$,
- 4. Assume in addition that " \cdot " is commutative, then $\forall n \in \mathbb{N}$ et $\forall a, b \in A$, we have :

$$(a+b)^n = \sum_{k=0}^n \mathcal{C}_k^n a^k \cdot b^{n-k}.$$
 binôme of Newton

Proof 2.1.1 Let 0 denote the identity element of the first law "+" of A.

1. By distributivity of " \cdot " with respect to "+" we have

$$0 \cdot a = (0+0) \cdot a = 0 \cdot a + 0 \cdot a$$

Since (A, +) is a group, we can simplify on the left and right by $0 \cdot a$, which gives $0 = 0 \cdot a$. Similarly, if we write $a \cdot 0 = a \cdot (0 + 0) = a \cdot 0 + a \cdot 0$, we obtain $a \cdot 0 = 0$

- 2. Since $0 = a \cdot 0 = a \cdot (b + (-b))$, then $0 = a \cdot b + a \cdot (-b)$, which shows that $a \cdot (-b)$ is the inverse of $a \cdot b$. Thus, $a \cdot (-b) = -ab$.
- 3. Since b c = b + (-c) then $a \cdot (b - c) = a \cdot (b + (-c)) = a \cdot b + a \cdot (-c) = a \cdot b - a \cdot c$
- 4. To demonstrate Newton's binomial, we'll adopt reasoning by induction.
- a For n = 0, we have $(a + b) \cdot 0 = 1_A = C_0^0 \cdot a^0 b^0$.
- b/ We assume that $(a+b)^n = \sum_{k=0}^n \mathcal{C}_k^n a^k \cdot b^{n-k}$ and show that :

$$(a+b)^{n+1} = \sum_{k=0}^{n+1} \mathcal{C}_k^{n+1} a^k \cdot b^{n+1-k} = \mathcal{C}_0^{n+1} b^{n+1} + \mathcal{C}_1^{n+1} a \cdot b^n + \mathcal{C}_2^{n+1} a^2 \cdot b^{n-1} + \dots + \mathcal{C}_n^{n+1} a^n b + \mathcal{C}_{n+1}^{n+1} a^{n+1} + \dots + \mathcal{C}_n^{n+1} a^n b + \mathcal{C}_n^{n+1} a^{n+1} + \dots + \mathcal{C}_n^{n+1} a^n b + \mathcal{C}_n^{n+1} a^{n+1} + \dots + \mathcal{C}_n^{n+1} a^n b + \mathcal{C}_n^{n+1} a^{n+1} + \dots + \mathcal{C}_n^{n+1} a^n b + \mathcal{C}_n^{n+1} a^{n+1} + \dots + \mathcal{C}_n^{n+1} a^n b + \mathcal{C}_n^{n+1} a^{n+1} + \dots + \mathcal{C}_n^{n+1} a^n b + \mathcal{C}_n^{n+1} a^{n+1} + \dots + \mathcal{C}_n^{n+1} a^n b + \mathcal{C}_n^{n+1} a^{n+1} + \dots + \mathcal{C}_n^{n+1} a^n b + \mathcal{C}_n^{n+1} a^{n+1} + \dots + \mathcal{C}_n^{n+1} + \dots + \mathcal{C}$$

Since $(a+b)^{n+1} = (a+b)(a+b)^n = a \cdot (a+b)^n + b \cdot (a+b)^n$ then

$$a(a+b)^{n} = \mathcal{C}_{0}^{n}a \cdot b^{n} + \mathcal{C}_{1}^{n}a^{2} \cdot b^{n-1} + \mathcal{C}_{2}^{n}a^{3} \cdot b^{n-2} + \dots + \mathcal{C}_{n}^{n-1}a^{n}b + \mathcal{C}_{n+1}^{n}a^{n+1}.$$

and

$$b(a+b)^{n} = \mathcal{C}_{0}^{n} \cdot b^{n+1} + \mathcal{C}_{1}^{n}ba \cdot b^{n-1} + \mathcal{C}_{2}^{n}ba^{2} \cdot b^{n-2} + \dots + \mathcal{C}_{n}^{n-1}ba^{n-1}b + \mathcal{C}_{n}^{n}ba^{n-1}b + \mathcal{C}_{n}^{n}bb^{n-1}b + \mathcal{C}_{n}^{n}bb^{n-1}b$$

On the other hand we have $ba^k b^l = a^k b^{-l+1}$, since " \cdot " is commutative, and $C_n^m + C_{n+1}^m = C_{n+1}^{m+1}$, by summing the two previous equalities we get :

$$(a+b)^{n+1} = \mathcal{C}_0^n b^{n+1} + (\mathcal{C}_0^n + \mathcal{C}_1^n) a \cdot b^n + (\mathcal{C}_1^n + \mathcal{C}_2^n) a^2 \cdot b^{n-1} + \dots + (\mathcal{C}_{n-1}^n + \mathcal{C}_n^n) a^n b + \mathcal{C}_n^n a^{n+1}.$$

This leads to

$$(a+b)^{n+1} = \mathcal{C}_0^{n+1}b^{n+1} + \mathcal{C}_1^{n+1}a \cdot b^n + \mathcal{C}_2^{n+1}a^2 \cdot b^{n-1} + \dots + \mathcal{C}_n^{n+1}a^nb + \mathcal{C}_{n+1}^{n+1}a^{n+1}$$

Hence the result.

Integral domain

Definition 2.1.2 An integral domain is a nonzero commutative ring A in which the product of any two nonzero elements is nonzero i.e. $\forall a, b \in A, a \cdot b = 0 \Rightarrow a = 0 \text{ or } b = 0$

Example 2.1.1 1. $(A, +, \cdot)$ is an integral domain for $A = \mathbb{Z}, \mathbb{Q}, \mathbb{R}$ and \mathbb{C} .

2. For $A = C([0,1], \mathbb{R}) = \{f : [0,1] / f \text{ continue}\}$. The ring $(A, +, \cdot)$ defined above is not an integral domain. Indeed Consider the functions f and g in A given by $f(x) = \{\begin{array}{cc} x - 1 & \text{if } x \in \begin{bmatrix} 0, \frac{1}{2} \\ 1 \\ 2 \\ 1 \end{bmatrix}, g(x) = \{\begin{array}{cc} 0 & \text{if } x \in \begin{bmatrix} 0, \frac{1}{2} \\ -x + 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, ue \text{ have } f(x) \cdot g(x) = 0.$ We can see that $f \neq 0$ and $g \neq 0$ but $f \cdot g = 0$ since for all $x \in [0, 1]$ we have $f(x) \cdot g(x) = 0$.

2.2 Subrings and the Subring Test.

Let $(A, +, \cdot)$ be a ring and let A' be a non-empty subset of A. Then $(A', +, \cdot)$ is a subring of A if it is a ring with respect to the operations it inherits from A.

The Subring Test

Let $(A, +, \cdot)$ be a ring and let $A' \subseteq A$. Then $(A, +, \cdot)$ is a subring of A if (and only if) A' is non-empty and the following hold :

- 1. (A', +) is an abelian subgroup of (A, +),
- 2. $\forall a, b \in A', a \cdot b \in A'$.

Example 2.2.1 *1.* \mathbb{Z} and \mathbb{Q} are subrings of \mathbb{R} ,

- 2. \mathbb{R} , regarded as numbers of the form a + 0i for $a \in \mathbb{R}$, is a subring of \mathbb{C} .
- 3. In the polynomial ring $\mathbb{R}[x]$, the polynomials of even degree form a subring but the polynomials of odd degree do NOT form a subring because $x \cdot x = x^2$ is not of odd degree.

4. $n\mathbb{Z} = \{nk | k \in \mathbb{Z}\}$ is a subring of \mathbb{Z} for any $n \in \mathbb{N}$.

5. The null ring is the ring $\{0\}$ formed by a single element.

Example 2.2.2 1. Let be the set $\mathbb{Q}[\sqrt{2}] = \{a + b\sqrt{2}/a \in \mathbb{Q}, b \in \mathbb{Q}\}$. $\mathbb{Q}[\sqrt{2}]$ is a ring. We check that \mathbb{Q} is a subring of $\mathbb{Q}[\sqrt{2}]$ for usual addition and multipli-

 $\mathbb{Q}[\sqrt{2}]$ is a ring. We check that \mathbb{Q} is a subring of $\mathbb{Q}[\sqrt{2}]$ for usual addition and multiplication.

2. The ring $\mathbb{Z}/n\mathbb{Z}$

Let's fix an integer $n \geq 2$. Consider the additive group $\mathbb{Z}/n\mathbb{Z} = \{\overline{0}, \overline{1}, \dots, \overline{n-1}\}$. We've already seen that the additive group $\mathbb{Z}/n\mathbb{Z}$ is abelian. We define a multiplication in $\mathbb{Z}/n\mathbb{Z}$ from that in \mathbb{Z} by posing : $\overline{x} \cdot \overline{y} = \overline{xy}$ for all $\overline{x}, \overline{y} \in \mathbb{Z}/n\mathbb{Z}$. This multiplication is well defined, regardless of the representatives chosen. It's immediate to check that $\mathbb{Z}/n\mathbb{Z}$ is a unitary commutative ring.

2.3 Ring homomorphism

Definition 2.3.1 Let $(A, +, \cdot)$ and $(B, +, \cdot)$ be two rings of identities elements 1_A and 1_B respectively and $f : A \to B$ be a map.

We say that f is a $if \forall a, b \in A$ we have

- 1. f(a+b) = f(a) + f(b),
- 2. $f(a \cdot b) = f(a) \cdot f(b)$,

3.
$$f(1_A) = 1_B$$
.

If in addition f is a bijection, then its inverse f^{-1} is also a ring homomorphism. In this case, f is called a **ring isomorphism**, and the rings A and B are called **isomorphic**. From the standpoint of ring theory, isomorphic rings cannot be distinguished.

3 Fields and integral domains

Definition of a field :

Definition 3.0.1 Let K a set, a structure $(K, +, \cdot)$, where + and \cdot are binary operations on K is a field if :

- 1. (K, +) is an abelian group. (Identity noted 0_K .),
- 2. $(K \{0\}, \cdot)$ is an abelian group. (Identity noted 1_K .),
- 3. The distributive laws hold (the " \cdot " is distributive with respect to +).

Proposition 3.0.1 Let $(K, +, \cdot)$ be a ring.

 $(K, +, \cdot)$ is a field if, and only if, every non-zero element of K is invertible, i.e. for all $a \in K$ with $a \neq 0$ there exists $1/a \in K$ (alternatively written a^{-1}) such that $a \cdot 1/a = 1/a \cdot a = 1$.

Definition 3.0.2 In a commutative ring we call an element $a \neq 0$ a zero divisor if there exists $b \neq 0$ such that $a \cdot b = 0$.

A commutative ring with identity in which $0 \neq 1$ is an integral domain (ID) if it has no zero divisors.

Examples of integral domains

1. We claim that any field is an integral domain. To prove this, assume that $(K, +, \cdot)$ is a field and let $a, b \in K$ be such that $a \cdot b = 0$. If $a \neq 0$ then a^{-1} exists, and we have

 $0 = a^{-1} \cdot 0 = a^{-1} \cdot (a \cdot b) = ((a^{-1} \cdot a) \cdot b) = 1 \cdot b = b.$

and likewise with the roles of a and b reversed.

- 2. \mathbb{Z} and K[x] are integral domains which fail to be fields.
- 3. K^2 , with coordinatewise addition and multiplication is a commutative ring with identity which fails to be an integral domain (and so is not a field) :

$$(0,1) \cdot (1,0) = (0,0).$$

3.1 Subfield

If $(K, +, \cdot)$ is a field, a sub-field of K is a sub-ring K' of K such that for any non-zero element x of K', we have $x^{-1} \in K', (K', +, \cdot)$ is then a field.

Example 3.1.1 1. \mathbb{Q} , \mathbb{R} et \mathbb{C} are fields, but not Z (2 is not invertible).

2. $\mathbb{Q}[\sqrt{2}]$ is a subfield of \mathbb{R} .

Proposition 3.1.1 Characterization of sub-fields Let $(K, +, \cdot)$ a field. A non-empty part K' of K is a sub-field of K, if and only if

1.
$$1_K \in K'$$

2. $\forall x, y \in K'; \quad x - y \in K'.$
3. $\forall x, y \in K'; \quad x \cdot y \in K'.$
4. $\forall x \in K'; \quad x^{-1} \in K'.$