Groups, rings and fields

$\mathfrak{H} \cdot \mathfrak{C}$

12 décembre 2023

1 Groups, rings and fields

1.1 Groups

1.1.1 Definitions and Examples

Definition 1.1.1 A group is a set G which is CLOSED under an operation * (that is, for any $x, y \in G, x * y \in G)$ and satisfies the following properties :

1. (Associativity) For all $x, y, z \in G,(x * y) * z=x *(y * z)$,
2. There exists an element $e \in G$ such that :
a/ (Identity) $\forall x \in G, e * x=x * e=x$; and
b/ (Inverses) $\forall x \in G, \exists x^{\prime} \in G$ such that $x * x^{\prime}=x^{\prime} * x=e$.
If in addition the following holds :
Commutativity : $x * y=y * x$ for all $x, y \in G$, then $(G, *)$ is called an abelian group, or simply a commutative group.

Remark 1.1.1 if $(G, *)$ is a group then the identity e is unique and the inverse of any x in G is uniquely determined by x.

Example 1.1.1 1. $(\mathbb{Z},+),(\mathbb{Q},+),(\mathbb{R},+)$ and $(\mathbb{C},+)$ are abelian groups $\left(e=0, \quad x^{\prime}=-x\right)$.
2. $(\mathbb{Q} \backslash\{0\}, \cdot),(\mathbb{R} \backslash\{0\}, \cdot),(\mathbb{C} \backslash\{0\}, \cdot)$ are abelian groups $\left(e=1, \quad x^{\prime}=\frac{1}{x}\right)$.
3. (\mathbb{Z}, \cdot) is not a group.
4. $(\mathbb{N},+)$ is not a group.
5. bijections on a set E.

Fix a non-empty set E and let

$$
\mathcal{B}(E, E)=\{f: E \rightarrow E / \quad \text { fis a bijection }\},
$$

and let" \circ "denote composition of maps.
a/ $(\mathcal{B}(E, E), \circ)$ is a group that is not abelian.
Indeed, let $E=\mathbb{R}$, we consider the following applications :

$$
\begin{aligned}
f: & \mathbb{R} \rightarrow \mathbb{R} \\
& x \longmapsto 2 x
\end{aligned} \text { and }
$$

$g: \mathbb{R} \rightarrow \mathbb{R}$
$x \longmapsto 1-x$.
Then $f \circ g \neq g \circ f$.
6. Let \mathcal{R} be the set of rotations of the plane whose center is at the origin O.

Then for two rotations R_{θ} and R_{α}, the composite $R_{\theta} \circ R_{\alpha}$ is still a rotation with center the origin and angle $\theta+\alpha$. Thus $(\mathcal{R}, \circ$) forms a group (which is even commutative). For this law the identity is the rotation of angle 0 (it is the identity of the plane). The inverse of a rotation R_{θ} is the rotation $R_{-\theta}$
7. For any natural number n, the set $G=\mathbb{Z} / n \mathbb{Z}$ of equivalence classes modulo n defined by

$$
\forall x \in \mathbb{Z}, \quad \bar{x} \in \mathbb{Z} / n \mathbb{Z} \Leftrightarrow \bar{x}=\{y \in \mathbb{Z} / \quad y-x \equiv 0[n]\}=\{y \in \mathbb{Z} / y-x \in n \mathbb{Z}\}
$$

We define the additive law denoted $\dot{+}$ as follows

$$
\forall \bar{x}, \bar{y} \in \mathbb{Z} / n \mathbb{Z}, \quad \bar{x}+\bar{y}=\overline{x+y}
$$

$(\mathbb{Z} / n \mathbb{Z}, \dot{+})$ is an abelian group. Indeed :
a/ G is closed under $\dot{+}$, since $x+y \in \mathbb{Z}$ and therefore $x+y=\overline{x+y} \in \mathbb{Z} / n \mathbb{Z}=G$.
b/ $\dot{+}$ is associative, since $\forall \bar{x}, \bar{y}, \bar{z} \in \mathbb{Z} / n \mathbb{Z}$,

$$
\begin{aligned}
(\bar{x}+\bar{y})+\bar{z} & =\overline{(x+y)}+\bar{z} \\
& =\overline{(x+y)+z} \\
& =\overline{x+(y+z)} \\
& =\bar{x}+\overline{(y+z)} \\
& =\bar{x}+(\bar{y}+\bar{z})
\end{aligned}
$$

c/ Knowing that + is commutative in \mathbb{Z}, the law $\dot{+}$ satisfies, $\bar{x}+\bar{y}=\overline{(x+y)}=\overline{(y+x)}=(\bar{y}+\bar{x})$. which shows that $\dot{+}$ is commutative
d/ The identity element $\overline{0}$ given by :
$\bar{x}+\overline{0}=\overline{x+0}=\bar{x}$.
is well defined, since 0 is the identity element of \mathbb{Z} for the law + , and therefore $\overline{0}$ is the identity element of G for the law $\dot{+}$.
e/ For all x, we have
$\bar{x} \dot{+} \overline{-x}=\overline{x+(-x)}=\overline{0}$,
since the symmetric of x in \mathbb{Z} for the law + is $-x$. Thus, \bar{x} admits as symmetric the element $\overline{-x}$ for the law $\dot{+}$.
Therefore, $\mathbb{Z} / n \mathbb{Z}$, is an abelian group.
For example in $\mathbb{Z} / 60 \mathbb{Z}$, we have $\overline{31}+\overline{46}=\overline{31+46}=\overline{77}=\overline{60+17}=\overline{60}+\overline{17}=\overline{0}+\overline{17}=\overline{17}$.

Proposition 1.1.1 Let $(G, *)$ be a group then

1. $\forall a, b \in G$ the equation $a * x=b$ (respectively $x * a=b$) admits a unique solution in $G, \quad x=a^{-1} b$ (respectively $x=b * a^{-1}$).
2. $\forall a, b, c \in G$ such that
$a * b=a * c$ (respectively $b * a=c * a$) we have $b=c$.

1.2 Subgroups

Definition 1.2.1 Let $(G, *)$ be a group. We say that a non-empty part H of G is a subgroup of G if $(H, *)$ is itself a group.

Proposition 1.2.1 Let G be a group, with identity e, and H a part of G, then the following properties are equivalent :

1. H is a subgroup of G,
2. $e \in H$ and $\forall x, y \in H$ we have $x * y^{-1} \in H$.

Remark 1.2.1 G and $\{e\}$ are so-called trivial subgroups of G.
Théorème 1.2.1 Additive subgroups of \mathbb{Z} are of the form $n \mathbb{Z}$, where n is a positive integer.
Proof 1.2.1 For $n=0,\{0\}=0 \mathbb{Z}$ is, by the previous remark, a subgroup of \mathbb{Z}.
Let $H=n \mathbb{Z}, \quad n>0$. So we have
a/ $0=n .0 \in n \mathbb{Z}$,
b/ Let $x, y \in H$, then $\exists k, l \in \mathbb{Z}$ such that $x=n k$ and $y=n l$. Thus, $y^{-1}=-y=n(-l)$ and we have

$$
x+(-y)=n k+n(-l)=n(k-l) \in n \mathbb{Z} .
$$

Which shows that $H=n \mathbb{Z}$ is a subgroup of \mathbb{Z}.
Théorème 1.2.2 Let G be a group and $\left(H_{i}\right)_{i \in I}$ a family of subgroups of G, then $\cap_{i \in I} H_{i}$ is a subgroup of G.

Proof 1.2.2 Given that $\forall i, H_{i}$ is a subgroup of G, then $e \in H_{i} \quad \forall i$.
Thus, $e \in \cap_{i \in I} H_{i}$ On the other hand, $\forall x, y \in \cap_{i \in I} H_{i}$ we have $x, y \in H_{i}$ for all $i \in I$, and H_{i} a subgroup of G, then $\forall i \in I$ we have $x * y^{-1} \in H_{i}$. Which leads to $x * y^{-1} \in \cap_{i \in I} H_{i}$.

Remark 1.2.2 The union of subgroups is not a subgroup.
Indeed, consider $H_{1}=3 \mathbb{Z}$ and $H_{2}=5 \mathbb{Z}$ two subgroups of \mathbb{Z}. If $H_{1} \cup H_{2}$ was a subgroup, then $8=3+5 \in H_{1} \cup H_{2}$ which is impossible since $8 \notin H_{1}$ and $8 \notin H_{2}$.
Let us give in what follows a necessary and sufficient condition for the union of subgroups to be a subgroup.

Théorème 1.2.3 Let H_{1} and H_{2} be two subgroups of a group $G . H_{1} \cup H_{2}$ is a subgroup of G if and only if $H_{1} \subseteq H_{2}$ or $H_{1} \subseteq H_{2}$.

1.3 Group homomorphisms

Given two groups $(G, *)$ and $\left(G^{\prime}, \top\right)$ two respective groups of identities elements e and e^{\prime}.
Definition 1.3.1 We call homomorphism groups G and G^{\prime} any map $f: G \rightarrow G^{\prime}$ verifying

$$
f(a * b)=f(a) \top f(b), \quad \forall a, b \in G
$$

If moreover $G=G^{\prime}, f$ is said to be an endomorphism of G.

Example 1.3.1 1. let $G=G^{\prime}=\mathbb{R}$ be an additive group and let the map $f: \mathbb{R} \rightarrow \mathbb{R} / \quad f(x)=2 x$. We have : $\forall x, y \in \mathbb{R}$

$$
f(x+y)=2(x+y)=2 x+2 y=f(x)+f(y) .
$$

f is therefore an homomorphism of groups.
2. Consider the application
$f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}, \quad f(x, y, z)=(x+y, y-z)$ where $\mathbb{R}^{2}, \mathbb{R}^{3}$ are considered additive groups. Let $X=(x, y, z)$ and $X^{\prime}=\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \in \mathbb{R}^{3}$, then

$$
\begin{aligned}
f\left(X+X^{\prime}\right) & =f\left(\left(x+x^{\prime}, y+y^{\prime}, z+z^{\prime}\right)\right) \\
& =\left(\left(x+x^{\prime}\right)+\left(y+y^{\prime}\right),\left(y+y^{\prime}\right)-\left(z+z^{\prime}\right)\right) \\
& =\left((x+y)+\left(x^{\prime}+y^{\prime}\right),(y-z)+\left(y^{\prime}-z^{\prime}\right)\right)=(x+y, y-z)+\left(x^{\prime}+y^{\prime}, y^{\prime}-z^{\prime}\right) \\
& =f((x, y, z))+f\left(\left(x^{\prime}, y^{\prime}, z^{\prime}\right)\right) .
\end{aligned}
$$

Proposition 1.3.1 Let $f: G \rightarrow G^{\prime}$ be a homomorphism of groups, then

1. $f(e)=e^{\prime}$.
2. $\left(f\left(x^{-1}\right)\right)=(f(x))^{-1}, \quad \forall x \in G$.

Proof 1.3.1 Since f is an homomorphism, then $f(a * b)=f(a) \top f(b), \forall a, b \in G$. Then :

1. we have : $f(e)=f(e * e)=f(e) \top f(e)$, with $f(e) \in G^{\prime}$, then $f(e)=e^{\prime}$.
2. Like $e^{\prime}=f(e)=f\left(x * x^{-1}\right)=f(x) \top f\left(x^{-1}\right), \forall x \in G$, then $f\left(x^{-1}\right)$ is the symmetric of $f(x)$ for the operation \top. Thus $f\left(x^{-1}\right)=(f(x))^{-1}$.

Example 1.3.2 Let's take the example of the function $f: \mathbb{R} \rightarrow \mathbb{R}_{+}^{*}$ defined by $f(x)=\exp (x)$. We indeed have $f(0)=1$: the identity of $(\mathbb{R},+)$ has as its image the identity of $\left(\mathbb{R}_{+}^{*},.\right)$.
For $x \in \mathbb{R}$ its inverse in $(\mathbb{R},+)$ is here its opposite $-x$, then $f(-x)=\exp (-x)=\frac{1}{\exp (x)}=\frac{1}{f(x)}$ is indeed the opposite (in $\left(\mathbb{R}_{+}^{*},.\right)$ of $f(x)$.

Proposition 1.3.2 1. Let two morphisms of groups $f: G \rightarrow G^{\prime}$ and $g: G^{\prime} \rightarrow G^{\prime \prime}$. Then $g \circ f: G \rightarrow G^{\prime \prime}$ is a morphism of groups.
2. If $f: G \rightarrow G^{\prime}$ is a bijective morphism then $f^{-1}: G^{\prime} \rightarrow G$ is also a group morphism.

Proof 1.3.2 The first part is easy. Let's show the second part :
Let $y, y^{\prime} \in G^{\prime}$. Since f is bijective, there exists $x, x^{\prime} \in G$ such that $f(x)=y$ and $f\left(x^{\prime}\right)=y^{\prime}$.
Then $f^{-1}\left(y \top y^{\prime}\right)=f^{-1}\left(f(x) \top f\left(x^{\prime}\right)\right)=f^{-1}\left(f\left(x * x^{\prime}\right)\right)=x * x^{\prime}=f^{-1}(y) * f^{-1}\left(y^{\prime}\right)$. And therefore f^{-1} is a morphism from G^{\prime} to G.

Definition 1.3.2 A bijective morphism is an isomorphism, if in addition $G=G^{\prime}$, we say that f is an automorphism.
Two groups G, G^{\prime} are isomorphic if there exists a morphism bijective $f: G \rightarrow G^{\prime}$.
Example 1.3.3 Still continuing the example $f(x)=\exp (x), \quad f: \mathbb{R} \rightarrow \mathbb{R}_{+}^{*}$ is a bijective map. Its reciprocal bijection $f^{-1}: \mathbb{R}_{+}^{*} \rightarrow \mathbb{R}$ is defined by $f^{-1}(x)=\ln (x)$.
According to the proposition above, f^{-1} is also a morphism from $\left(\mathbb{R}_{+}^{*}, \times\right)$ to $(\mathbb{R},+)$ so $f^{-1}\left(x \times x^{\prime}\right)=f^{-1}(x)+f^{-1}\left(x^{\prime}\right)$, what is expressed here by the well-known formula $: \ln \left(x \times x^{\prime}\right)=$ $\ln (x)+\ln \left(x^{\prime}\right)$. Thus f is an isomorphism and the groups $\left(\mathbb{R}_{+}^{*}, \times\right)$ and $(\mathbb{R},+)$ are isomorphic.

1.4 Kernel and image

Let $f: G \rightarrow G^{\prime}$ be a group morphism. We define two important subsets which will be subgroups.

Definition 1.4.1 The kernel of f is

$$
\operatorname{Ker} f=\left\{x \in G / \quad f(x)=e_{G^{\prime}}=e^{\prime}\right\} .
$$

So it's a subset of G. In terms of reciprocal image we have by definition $\operatorname{Kerf}=f^{-1}\left(\left\{e^{\prime}\right\}\right)$
(Attention, the notation f^{-1} here denotes the reciprocal image, and does not mean that f is bijective.)

Definition 1.4.2 The image of f is

$$
\operatorname{Im} f=\{f(x) / \quad x \in G\} .
$$

It is therefore a subset of G^{\prime} and in terms of direct image we have $\operatorname{Im} f=f(G)$.
Proposition 1.4.1 Let $f: G \rightarrow G^{\prime}$ be a group morphism.

1. Kerf is a subgroup of G.
2. Imf is a subgroup of G^{\prime}.
3. f is injective if and only if $\operatorname{Ker} f=\{e\}$.
4. f is surjective if and only if $\operatorname{Im} f=G^{\prime}$.

Example 1.4.1 Consider the following homomorphism :
$f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, \quad f(x, y)=(x+y, x-y)$.
SO

$$
\operatorname{ker} f=\{(x, y) / \quad f(x, y)=(0,0)\}
$$

$f(x, y)=(0,0) \Leftrightarrow x+y=0 \quad$ and $\quad x-y=0$, thus $x=y=0$, therefore

$$
\operatorname{ker} f=\{(0,0)\}
$$

So according to the proposition above f is injective.

$$
\operatorname{Im} f=\left\{f(x, y) / \quad(x, y) \in \mathbb{R}^{2}\right\} .
$$

We have $(X, Y) \in \mathbb{R}^{2}$, suchthat $(X, Y)=f(x, y)=(x+y, x-y)$,
therefore $x=\frac{1}{2} X+\frac{1}{2} Y$ and $y=\frac{1}{2} X-\frac{1}{2} Y$.
This system admits a unique solution (X, Y) for each value of (x, y), therefore $\operatorname{Im} f=\mathbb{R}^{2}$, and f is surjective.

2 Rings

2.1 The definition of a ring.

Let + and \cdot be two binary operations defined on a non-empty set A.

Definition 2.1.1 A structure $(A,+, \cdot)$ is a ring if we have the following properties :

1. Addition :

 $(A,+)$ is an abelian group :a/ Associativity.
b/ Zero : there exists $0 \in A$ such that for all $a \in A$ we have $a+0=0+a=a$.
c/ Inverses : for any $a \in A$ there exists $-a \in A$ such that $a+(-a)=(-a)+a=0$. Commutativity : for all $a, b \in A$ we have $a+b=b+a$.
2. Multiplication : The law"." is associative : for all $a, b, c \in A$ we have $a \cdot(b \cdot c)=(a \cdot b) \cdot c$.
3. Addition and multiplication together.

For all $a, b, c \in A$,

$$
a \cdot(b+c)=a \cdot b+a \cdot c \quad \text { et } \quad(b+c) \cdot a=b \cdot a+c \cdot a .
$$

We sometimes say A is a ring, taken it as given that the ring operations are denoted " + " and $" \cdot "$ As in ordinary arithmetic we shall frequently suppress • and write $a b$ instead of $a \cdot b$. We do NOT demand that multiplication in a ring be commutative.
Notation : subtraction and division We write $a-b$ as shorthand for $a+(-b)$ and a / b as shorthand for $a \cdot(1 / b)$ when $1 / b$ exists.

Remark 2.1.1 1. If furthermore there exists $1_{A} \in A$ such that $a \cdot 1_{A}=1_{A} \cdot a=a, \forall a \in A$, we say that $(A,+, \cdot)$ is a unit ring.
2. If the law"." is commutative, A is called a commutative ring.

Considérations.

1. In the following, the rings considered are unitary.

	1_{A}	if $n=0$
2. We define a^{n} for $n \in \mathbb{N}$ as follows : $a^{n}=\{$	a	if $n=1$
	$a \cdot a \cdots a)(n$ times	if $n \geq$

Examples of rings.

Number systems

1. All of $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$ and \mathbb{C} are commutative unit rings with identity 1 .
2. \mathbb{N} is NOT a ring for the usual addition and multiplication. These are binary operations and we do have a zero element, namely 0 .
The existence of additive inverses fails : there is no $n \in \mathbb{N}$ for which $1+n=0$, for example.
3. Consider the set of even integers, denoted $2 \mathbb{Z}$, with the usual addition and multiplication. This is a commutative ring without an identity. To verify that this condition (of identity) fails it is just to say that the integer 1 does not belong to $2 \mathbb{Z}$.
Instead we argue as follows. Suppose for contradiction that there were an element $e \in 2 \mathbb{Z}$ such that $n \cdot e=n$ for all $n \in 2 \mathbb{Z}$. In particular $2 e=2$, from which we deduce that e would have to be 1 . Since $1 \notin 2 \mathbb{Z}$ we have a contradiction.
4. Let $A=C([0,1], \mathbb{R})=\{f:[0,1] / \quad f$ continue $\}$.

We define on A the following operations: "+","."
$f+g: \quad[0,1] \rightarrow \mathbb{R}$
$f \cdot g: \quad[0,1] \rightarrow \mathbb{R}$
$x \mapsto(f+g)(x)=f(x)+g(x)$.
$x \mapsto(f \cdot g)(x)=f(x) \cdot g(x)$.

We check that $(A,+, \cdot)$ is a commutative ring. The identity element for the addition " + " is the function :
$0: \quad[0,1] \rightarrow \mathbb{R}$ $x \mapsto 0(x)=0$.

And the identity element 1_{A} for multiplication, is the function :
$1_{A}: \quad[0,1] \rightarrow \mathbb{R}$
$x \mapsto 1_{A}(x)=1$.

Calculational rules for rings

Proposition 2.1.1 Let $(A,+, \cdot)$ be a ring, then we have :

1. $\forall a \in A, \quad 0 \cdot a=a \cdot 0=0$,
2. $\forall a, b \in A, \quad a \cdot(-b)=(-a \cdot b)$,
3. $\forall a, b, c \in A, \quad a \cdot(b-c)=a \cdot b-a \cdot c$,
4. Assume in addition that "." is commutative, then $\forall n \in \mathbb{N}$ et $\forall a, b \in A$, we have :

$$
(a+b)^{n}=\sum_{k=0}^{n} \mathcal{C}_{k}^{n} a^{k} \cdot b^{n-k} . \quad \text { binôme of } \quad \text { Newton. }
$$

Proof 2.1.1 Let 0 denote the identity element of the first law" + "of A.

1. By distributivity of " $"$ with respect to " +" we have

$$
0 \cdot a=(0+0) \cdot a=0 \cdot a+0 \cdot a
$$

Since $(A,+)$ is a group, we can simplify on the left and right by $0 \cdot a$, which gives $0=0 \cdot a$. Similarly, if we write $a \cdot 0=a \cdot(0+0)=a \cdot 0+a \cdot 0$, we obtain $a \cdot 0=0$
2. Since $0=a \cdot 0=a \cdot(b+(-b))$, then $0=a \cdot b+a \cdot(-b)$, which shows that $a \cdot(-b)$ is the inverse of $a \cdot b$. Thus, $a \cdot(-b)=-a b$.
3. Since $b-c=b+(-c)$ then

$$
a \cdot(b-c)=a \cdot(b+(-c))=a \cdot b+a \cdot(-c)=a \cdot b-a \cdot c
$$

4. To demonstrate Newton's binomial, we'll adopt reasoning by induction.
$a /$ For $n=0$, we have $(a+b) \cdot 0=1_{A}=\mathcal{C}_{0}^{0} \cdot a^{0} b^{0}$.
$b /$ We assume that $(a+b)^{n}=\sum_{k=0}^{n} \mathcal{C}_{k}^{n} a^{k} \cdot b^{n-k}$ and show that :

$$
(a+b)^{n+1}=\sum_{k=0}^{n+1} \mathcal{C}_{k}^{n+1} a^{k} \cdot b^{n+1-k}=\mathcal{C}_{0}^{n+1} b^{n+1}+\mathcal{C}_{1}^{n+1} a \cdot b^{n}+\mathcal{C}_{2}^{n+1} a^{2} \cdot b^{n-1}+\cdots+\mathcal{C}_{n}^{n+1} a^{n} b+\mathcal{C}_{n+1}^{n+1} a^{n+1}
$$

Since $(a+b)^{n+1}=(a+b)(a+b)^{n}=a \cdot(a+b)^{n}+b \cdot(a+b)^{n}$ then

$$
a(a+b)^{n}=\mathcal{C}_{0}^{n} a \cdot b^{n}+\mathcal{C}_{1}^{n} a^{2} \cdot b^{n-1}+\mathcal{C}_{2}^{n} a^{3} \cdot b^{n-2}+\cdots+\mathcal{C}_{n}^{n-1} a^{n} b+\mathcal{C}_{n+1}^{n} a^{n+1} .
$$

and

$$
b(a+b)^{n}=\mathcal{C}_{0}^{n} \cdot b^{n+1}+\mathcal{C}_{1}^{n} b a \cdot b^{n-1}+\mathcal{C}_{2}^{n} b a^{2} \cdot b^{n-2}+\cdots+\mathcal{C}_{n}^{n-1} b a^{n-1} b+\mathcal{C}_{n}^{n} b a^{n} .
$$

On the other hand we have $b a^{k} b^{l}=a^{k} b^{-l+1}$, since "." is commutative, and $\mathcal{C}_{n}^{m}+\mathcal{C}_{n+1}^{m}=$ \mathcal{C}_{n+1}^{m+1}, by summing the two previous equalities we get :
$(a+b)^{n+1}=\mathcal{C}_{0}^{n} b^{n+1}+\left(\mathcal{C}_{0}^{n}+\mathcal{C}_{1}^{n}\right) a \cdot b^{n}+\left(\mathcal{C}_{1}^{n}+\mathcal{C}_{2}^{n}\right) a^{2} \cdot b^{n-1}+\cdots+\left(\mathcal{C}_{n-1}^{n}+\mathcal{C}_{n}^{n}\right) a^{n} b+\mathcal{C}_{n}^{n} a^{n+1}$.
This leads to

$$
(a+b)^{n+1}=\mathcal{C}_{0}^{n+1} b^{n+1}+\mathcal{C}_{1}^{n+1} a \cdot b^{n}+\mathcal{C}_{2}^{n+1} a^{2} \cdot b^{n-1}+\cdots+\mathcal{C}_{n}^{n+1} a^{n} b+\mathcal{C}_{n+1}^{n+1} a^{n+1} .
$$

Hence the result.

Integral domain

Definition 2.1.2 An integral domain is a nonzero commutative ring A in which the product of any two nonzero elements is nonzero i.e.
$\forall a, b \in A, \quad a \cdot b=0 \Rightarrow a=0 \quad$ or $\quad b=0$
Example 2.1.1 1. $(A,+, \cdot)$ is an integral domain for $A=\mathbb{Z}, \mathbb{Q}, \mathbb{R}$ and \mathbb{C}.
2. For $A=C([0,1], \mathbb{R})=\{f:[0,1] / \quad f$ continue $\}$. The ring $(A,+, \cdot)$ defined above is not an integral domain. Indeed Consider the functions f and g in A given by

We can see that $f \neq 0$ and $g \neq 0$ but $f \cdot g=0$ since forall $x \in[0,1]$ we have $f(x) \cdot g(x)=0$.

2.2 Subrings and the Subring Test.

Let $(A,+, \cdot)$ be a ring and let A^{\prime} be a non-empty subset of A. Then $\left(A^{\prime},+, \cdot\right)$ is a subring of A if it is a ring with respect to the operations it inherits from A.

The Subring Test

Let $(A,+, \cdot)$ be a ring and let $A^{\prime} \subseteq A$. Then $(A,+, \cdot)$ is a subring of A if (and only if) A^{\prime} is non-empty and the following hold :

1. $\left(A^{\prime},+\right)$ is an abelian subgroup of $(A,+)$,
2. $\forall a, b \in A^{\prime}, a \cdot b \in A^{\prime}$.

Example 2.2.1 1. \mathbb{Z} and \mathbb{Q} are subrings of \mathbb{R},
2. \mathbb{R}, regarded as numbers of the form $a+0$ for $a \in \mathbb{R}$, is a subring of \mathbb{C}.
3. In the polynomial ring $\mathbb{R}[x]$, the polynomials of even degree form a subring but the polynomials of odd degree do NOT form a subring because $x \cdot x=x^{2}$ is not of odd degree.
4. $n \mathbb{Z}=\{n k \mid \quad k \in \mathbb{Z}\}$ is a subring of \mathbb{Z} for any $n \in \mathbb{N}$.
5. The null ring is the ring $\{0\}$ formed by a single element.

Example 2.2.2 1. Let be the set $\mathbb{Q}[\sqrt{2}]=\{a+b \sqrt{2} / a \in \mathbb{Q}, \quad b \in \mathbb{Q}\}$.
$\mathbb{Q}[\sqrt{2}]$ is a ring. We check that \mathbb{Q} is a subring of $\mathbb{Q}[\sqrt{2}]$ for usual addition and multiplication.
2. The $\operatorname{ring} \mathbb{Z} / n \mathbb{Z}$

Let's fix an integer $n \geq 2$. Consider the additive group $\mathbb{Z} / n \mathbb{Z}=\{\overline{0}, \overline{1}, \cdots, \overline{n-1}\}$. We've already seen that the additive group $\mathbb{Z} / n \mathbb{Z}$ is abelian. We define a multiplication in $\mathbb{Z} / n \mathbb{Z}$ from that in \mathbb{Z} by posing : $\bar{x}: \bar{y}=\overline{x y}$ for all $\bar{x}, \bar{y} \in \mathbb{Z} / n \mathbb{Z}$. This multiplication is well defined, regardless of the representatives chosen. It's immediate to check that $\mathbb{Z} / n \mathbb{Z}$ is a unitary commutative ring.

2.3 Ring homomorphism

Definition 2.3.1 Let $(A,+, \cdot)$ and $(B,+, \cdot)$ be two rings of identities elements 1_{A} and 1_{B} respectively and $f: A \rightarrow B$ be a map.
We say that f is a if $\forall a, b \in A$ we have

1. $f(a+b)=f(a)+f(b)$,
2. $f(a \cdot b)=f(a) \cdot f(b)$,
3. $f\left(1_{A}\right)=1_{B}$.

If in addition f is a bijection, then its inverse f^{-1} is also a ring homomorphism. In this case, f is called a ring isomorphism, and the rings A and B are called isomorphic.
From the standpoint of ring theory, isomorphic rings cannot be distinguished.

3 Fields and integral domains

Definition of a field :

Definition 3.0.1 Let K a set, a structure $(K,+, \cdot)$, where + and \cdot are binary operations on K is a field if :

1. $(K,+)$ is an abelian group. (Identity noted 0_{K}.),
2. $(K-\{0\}, \cdot)$ is an abelian group. (Identity noted 1_{K}.),
3. The distributive laws hold (the "." is distributive with respect to +).

Proposition 3.0.1 Let $(K,+, \cdot)$ be a ring.
$(K,+, \cdot)$ is a field if, and only if, every non-zero element of K is invertible, i.e. for all $a \in K$ with $a \neq 0$ there exists $1 / a \in K$ (alternatively written a^{-1}) such that $a \cdot 1 / a=1 / a \cdot a=1$.

Definition 3.0.2 In a commutative ring we call an element $a \neq 0$ a zero divisor if there exists $b \neq 0$ such that $a \cdot b=0$.
A commutative ring with identity in which $0 \neq 1$ is an integral domain (ID) if it has no zero divisors.

Examples of integral domains

1. We claim that any field is an integral domain. To prove this, assume that $(K,+, \cdot)$ is a field and let $a, b \in K$ be such that $a \cdot b=0$. If $a \neq 0$ then a^{-1} exists, and we have

$$
0=a^{-1} \cdot 0=a^{-1} \cdot(a \cdot b)=\left(\left(a^{-1} \cdot a\right) \cdot b\right)=1 \cdot b=b .
$$

and likewise with the roles of a and b reversed.
2. \mathbb{Z} and $K[x]$ are integral domains which fail to be fields.
3. K^{2}, with coordinatewise addition and multiplication is a commutative ring with identity which fails to be an integral domain (and so is not a field) :

$$
(0,1) \cdot(1,0)=(0,0) .
$$

3.1 Subfield

If $(K,+, \cdot)$ is a field, a sub-field of K is a sub-ring K^{\prime} of K such that for any non-zero element x of K^{\prime}, we have $x^{-1} \in K^{\prime},\left(K^{\prime},+, \cdot\right)$ is then a field.

Example 3.1.1 1. \mathbb{Q}, \mathbb{R} et \mathbb{C} are fields, but not Z (2 is not invertible).
2. $\mathbb{Q}[\sqrt{2}]$ is a subfield of \mathbb{R}.

Proposition 3.1.1 Characterization of sub-fields Let $(K,+, \cdot)$ a field. A non-empty part K^{\prime} of K is a sub-field of K, if and only if

1. $1_{K} \in K^{\prime}$
2. $\forall x, y \in K^{\prime} ; \quad x-y \in K^{\prime}$.
3. $\forall x, y \in K^{\prime} ; \quad x \cdot y \in K^{\prime}$.
4. $\forall x \in K^{\prime} ; \quad x^{-1} \in K^{\prime}$.
