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12 décembre 2023

1 Groups, rings and fields

1.1 Groups

1.1.1 Definitions and Examples

Definition 1.1.1 A group is a set G which is CLOSED under an operation ∗ (that is, for
any x, y ∈ G, x ∗ y ∈ G) and satisfies the following properties :

1. (Associativity) For all x, y, z ∈ G, (x ∗ y) ∗ z = x ∗ (y ∗ z),
2. There exists an element e ∈ G such that :
a/ (Identity) ∀x ∈ G, e ∗ x = x ∗ e = x ; and
b/ (Inverses)∀x ∈ G,∃x′ ∈ G such that x ∗ x′ = x′ ∗ x = e.

If in addition the following holds :
Commutativity : x ∗ y = y ∗ x for all x, y ∈ G, then (G, ∗) is called an abelian group, or
simply a commutative group.

Remark 1.1.1 if (G, ∗) is a group then the identity e is unique and the inverse of any x in G
is uniquely determined by x.

Example 1.1.1 1. (Z,+), (Q,+), (R,+) and (C,+) are abelian groups (e = 0, x′ = −x).
2. (Q \ {0}, ·), (R \ {0}, ·), (C \ {0}, ·) are abelian groups (e = 1, x′ = 1

x
).

3. (Z, ·) is not a group.
4. (N,+) is not a group.
5. bijections on a set E.

Fix a non-empty set E and let

B(E,E) = {f : E → E/ f is a bijection } ,

and let ” ◦ ” denote composition of maps.
a/ (B(E,E), ◦) is a group that is not abelian.

Indeed, let E = R, we consider the following applications :
f : R→ R

x 7−→ 2x
and

g : R→ R
x 7−→ 1− x. Then f ◦ g 6= g ◦ f .
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6. Let R be the set of rotations of the plane whose center is at the origin O.
Then for two rotations Rθ and Rα, the composite Rθ ◦Rα is still a rotation with center
the origin and angle θ + α. Thus (R, ◦) forms a group (which is even commutative).
For this law the identity is the rotation of angle 0 (it is the identity of the plane). The
inverse of a rotation Rθ is the rotation R−θ

7. For any natural number n, the set G = Z/nZ of equivalence classes modulo n defined by

∀x ∈ Z, x ∈ Z/nZ⇔ x = {y ∈ Z/ y − x ≡ 0 [n]} = {y ∈ Z/y − x ∈ nZ} .

We define the additive law denoted u as follows

∀x, y ∈ Z/nZ, xu y = x+ y.

(Z/nZ,u) is an abelian group. Indeed :

a/ G is closed under u, since x+ y ∈ Z and therefore xu y = x+ y ∈ Z/nZ = G.
b/ u is associative, since ∀x, y, z ∈ Z/nZ,

(xu y)u z = (x+ y)u z

= (x+ y) + z

= x+ (y + z)

= xu (y + z)

= xu (y u z) .

c/ Knowing that + is commutative in Z, the law u satisfies,
xu y = (x+ y) = (y + x) = (y u x). which shows that u is commutative

d/ The identity element 0 given by :
xu 0 = x+ 0 = x.
is well defined, since 0 is the identity element of Z for the law +, and therefore 0 is the
identity element of G for the law u.

e/ For all x, we have
xu−x = x+ (−x) = 0,
since the symmetric of x in Z for the law + is −x. Thus, x admits as symmetric the
element −x for the law u.
Therefore, Z/nZ, is an abelian group.

For example in Z/60Z, we have31u46 = 31 + 46 = 77 = 60 + 17 = 60u17 = 0u17 = 17.

Proposition 1.1.1 Let (G, ∗) be a group then
1. ∀a, b ∈ G the equation a ∗ x = b (respectively x ∗ a = b) admits a unique solution in

G, x = a−1b (respectively x = b ∗ a−1).
2. ∀a, b, c ∈ G such that

a ∗ b = a ∗ c (respectively b ∗ a = c ∗ a) we have b = c.
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1.2 Subgroups

Definition 1.2.1 Let (G, ∗) be a group. We say that a non-empty part H of G is a subgroup
of G if (H, ∗) is itself a group.

Proposition 1.2.1 Let G be a group, with identity e, and H a part of G, then the following
properties are equivalent :

1. H is a subgroup of G,
2. e ∈ H and ∀x, y ∈ H we have x ∗ y−1 ∈ H.

Remark 1.2.1 G and {e} are so-called trivial subgroups of G.

Théorème 1.2.1 Additive subgroups of Z are of the form nZ, where n is a positive integer.

Proof 1.2.1 For n = 0, {0} = 0Z is, by the previous remark, a subgroup of Z.
Let H = nZ, n > 0. So we have

a/ 0 = n.0 ∈ nZ,
b/ Let x, y ∈ H, then ∃k, l ∈ Z such that x = nk and y = nl. Thus, y−1 = −y = n(−l) and

we have
x+ (−y) = nk + n(−l) = n(k − l) ∈ nZ.

Which shows that H = nZ is a subgroup of Z.

Théorème 1.2.2 Let G be a group and (Hi)i∈I a family of subgroups of G, then ∩i∈IHi is a
subgroup of G.

Proof 1.2.2 Given that ∀i,Hi is a subgroup of G, then e ∈ Hi ∀i.
Thus, e ∈ ∩i∈IHi On the other hand, ∀x, y ∈ ∩i∈IHi we have x, y ∈ Hi for all i ∈ I, and Hi a
subgroup of G, then ∀i ∈ I we have x ∗ y−1 ∈ Hi. Which leads to x ∗ y−1 ∈ ∩i∈IHi.

Remark 1.2.2 The union of subgroups is not a subgroup.

Indeed, consider H1 = 3Z and H2 = 5Z two subgroups of Z. If H1 ∪H2 was a subgroup, then
8 = 3 + 5 ∈ H1 ∪H2 which is impossible since 8 /∈ H1 and 8 /∈ H2.
Let us give in what follows a necessary and sufficient condition for the union of subgroups to
be a subgroup.

Théorème 1.2.3 Let H1 and H2 be two subgroups of a group G. H1 ∪H2 is a subgroup of G
if and only if H1 ⊆ H2 or H1 ⊆ H2 .

1.3 Group homomorphisms

Given two groups (G, ∗) and (G′,>) two respective groups of identities elements e and e′.

Definition 1.3.1 We call homomorphism groups G and G′ any map f : G→ G′ verifying

f(a ∗ b) = f(a)>f(b), ∀a, b ∈ G.

If moreover G = G′, f is said to be an endomorphism of G.
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Example 1.3.1 1. let G = G′ = R be an additive group and let
the map f : R→ R/ f(x) = 2x. We have : ∀x, y ∈ R

f(x+ y) = 2(x+ y) = 2x+ 2y = f(x) + f(y).

f is therefore an homomorphism of groups.
2. Consider the application

f : R3 → R2, f(x, y, z) = (x+ y, y − z) where R2,R3 are considered additive groups.
Let X = (x, y, z) and X ′ = (x′, y′, z′) ∈ R3, then

f(X +X ′) = f ((x+ x′, y + y′, z + z′))

= ((x+ x′) + (y + y′), (y + y′)− (z + z′))

= ((x+ y) + (x′ + y′), (y − z) + (y′ − z′)) = (x+ y, y − z) + (x′ + y′, y′ − z′)
= f ((x, y, z)) + f ((x′, y′, z′)) .

Proposition 1.3.1 Let f : G→ G′ be a homomorphism of groups, then
1. f(e) = e′.
2. (f(x−1)) = (f(x))−1 , ∀x ∈ G.

Proof 1.3.1 Since f is an homomorphism, then f(a ∗ b) = f(a)>f(b),∀a, b ∈ G. Then :
1. we have : f(e) = f(e ∗ e) = f(e)>f(e), withf(e) ∈ G′, then f(e) = e′.
2. Like e′ = f(e) = f(x ∗ x−1) = f(x)>f(x−1),∀x ∈ G, then f(x−1) is the symmetric of

f(x) for the operation >. Thus f(x−1) = (f(x))−1.

Example 1.3.2 Let’s take the example of the function f : R→ R∗+ defined by f(x) = exp(x).
We indeed have f(0) = 1 : the identity of (R,+) has as its image the identity of (R∗+, .).
For x ∈ R its inverse in (R,+) is here its opposite −x, then f(−x) = exp(−x) = 1

exp(x)
= 1

f(x)

is indeed the opposite (in (R∗+, .) of f(x).

Proposition 1.3.2 1. Let two morphisms of groups f : G → G′ and g : G′ → G”. Then
g ◦ f : G→ G” is a morphism of groups.

2. If f : G→ G′ is a bijective morphism then f−1 : G′ → G is also a group morphism.

Proof 1.3.2 The first part is easy. Let’s show the second part :
Let y, y′ ∈ G′. Since f is bijective, there exists x, x′ ∈ G such that f(x) = y and f(x′) = y′.
Then f−1(y>y′) = f−1 (f(x)>f(x′)) = f−1 (f(x ∗ x′)) = x∗x′ = f−1(y)∗f−1(y′). And therefore
f−1 is a morphism from G′ to G.

Definition 1.3.2 A bijective morphism is an isomorphism, if in addition G = G′, we say
that f is an automorphism.
Two groups G,G′ are isomorphic if there exists a morphism bijective f : G→ G′.

Example 1.3.3 Still continuing the example f(x) = exp(x), f : R→ R∗+ is a bijective map.
Its reciprocal bijection f−1 : R∗+ → R is defined by f−1(x) = ln(x).
According to the proposition above, f−1 is also a morphism from (R∗+,×) to (R,+) so
f−1(x×x′) = f−1(x)+f−1(x′), what is expressed here by the well-known formula : ln(x×x′) =
ln(x) + ln(x′). Thus f is an isomorphism and the groups (R∗+,×) and (R,+) are isomorphic.
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1.4 Kernel and image

Let f : G → G′ be a group morphism. We define two important subsets which will be
subgroups.

Definition 1.4.1 The kernel of f is

Kerf = {x ∈ G/ f(x) = eG′ = e′} .

So it’s a subset of G. In terms of reciprocal image we have by definition Kerf = f−1 ({e′})
(Attention, the notation f−1 here denotes the reciprocal image, and does not mean that

f is bijective.)

Definition 1.4.2 The image of f is

Imf = {f(x)/ x ∈ G} .

It is therefore a subset of G′ and in terms of direct image we have Imf = f(G).

Proposition 1.4.1 Let f : G→ G′ be a group morphism.
1. Kerf is a subgroup of G.
2. Imf is a subgroup of G′.
3. f is injective if and only if Kerf = {e}.
4. f is surjective if and only if Imf = G′.

Example 1.4.1 Consider the following homomorphism :
f : R2 → R2, f(x, y) = (x+ y, x− y).
SO

kerf = {(x, y)/ f(x, y) = (0, 0)} ,

f(x, y) = (0, 0)⇔ x+ y = 0 and x− y = 0, thus x = y = 0, therefore

kerf = {(0, 0)} .

So according to the proposition above f is injective.

Imf =
{
f(x, y)/ (x, y) ∈ R2

}
.

We have (X, Y ) ∈ R2, suchthat(X, Y ) = f(x, y) = (x+ y, x− y),
therefore x = 1

2
X + 1

2
Y and y = 1

2
X − 1

2
Y .

This system admits a unique solution (X, Y ) for each value of (x, y), therefore Imf = R2, and
f is surjective.

2 Rings

2.1 The definition of a ring.

Let + and · be two binary operations defined on a non-empty set A.
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Definition 2.1.1 A structure (A,+, ·) is a ring if we have the following properties :
1. Addition :

(A,+) is an abelian group :
a/ Associativity.
b/ Zero : there exists 0 ∈ A such that for all a ∈ A we have a+ 0 = 0 + a = a.
c/ Inverses : for any a ∈ A there exists −a ∈ A such that a + (−a) = (−a) + a = 0.

Commutativity : for all a, b ∈ A we have a+ b = b+ a.

2. Multiplication :
The law ” · ” is associative : for all a, b, c ∈ A we have a · (b · c) = (a · b) · c.

3. Addition and multiplication together.
For all a, b, c ∈ A,

a · (b+ c) = a · b+ a · c et (b+ c) · a = b · a+ c · a.

We sometimes say A is a ring, taken it as given that the ring operations are denoted ” + ” and
” · ” As in ordinary arithmetic we shall frequently suppress · and write ab instead of a · b. We
do NOT demand that multiplication in a ring be commutative.
Notation : subtraction and division We write a− b as shorthand for a+ (−b) and a/b as
shorthand for a · (1/b) when 1/b exists.

Remark 2.1.1 1. If furthermore there exists 1A ∈ A such that a · 1A = 1A · a = a,∀a ∈ A,
we say that (A,+, ·) is a unit ring.

2. If the law ” · ” is commutative, A is called a commutative ring.

Considérations.

1. In the following, the rings considered are unitary.

2. We define an for n ∈ N as follows : an = {
1A if n = 0
a if n = 1
a · a · · · · a (n times) if n ≥ 2

Examples of rings.

Number systems
1. All of Z,Q,R and C are commutative unit rings with identity 1.
2. N is NOT a ring for the usual addition and multiplication. These are binary operations

and we do have a zero element, namely 0.
The existence of additive inverses fails : there is no n ∈ N for which 1 + n = 0, for
example.

3. Consider the set of even integers, denoted 2Z, with the usual addition and multiplication.
This is a commutative ring without an identity. To verify that this condition (of identity)
fails it is just to say that the integer 1 does not belong to 2Z.
Instead we argue as follows. Suppose for contradiction that there were an element e ∈ 2Z
such that n · e = n for all n ∈ 2Z. In particular 2e = 2, from which we deduce that e
would have to be 1. Since 1 /∈ 2Z we have a contradiction.
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4. Let A = C([0, 1] ,R) = {f : [0, 1] / f continue}.
We define on A the following operations : ” + ”, ” · ”
f + g : [0, 1]→ R

x 7→ (f + g)(x) = f(x) + g(x).
f · g : [0, 1]→ R

x 7→ (f · g)(x) = f(x) · g(x).
We check that (A,+, ·) is a commutative ring. The identity element for the addition ” + ” is
the function :

0 : [0, 1]→ R
x 7→ 0(x) = 0. And the identity element 1A for multiplication, is the function :

1A : [0, 1]→ R
x 7→ 1A(x) = 1.

Calculational rules for rings

Proposition 2.1.1 Let (A,+, ·) be a ring, then we have :
1. ∀a ∈ A, 0 · a = a · 0 = 0,

2. ∀a, b ∈ A, a · (−b) = (−a · b),
3. ∀a, b, c ∈ A, a · (b− c) = a · b− a · c,
4. Assume in addition that ” · ” is commutative, then ∀n ∈ N et ∀a, b ∈ A, we have :

(a+ b)n =
n∑
k=0

Cnk ak · bn−k. binôme of Newton.

Proof 2.1.1 Let 0 denote the identity element of the first law ” + ” of A.
1. By distributivity of ” · ” with respect to ” + ” we have

0 · a = (0 + 0) · a = 0 · a+ 0 · a

Since (A,+) is a group, we can simplify on the left and right by 0·a, which gives 0 = 0·a.
Similarly, if we write a · 0 = a · (0 + 0) = a · 0 + a · 0, we obtain a · 0 = 0

2. Since 0 = a · 0 = a · (b+ (−b)) , then 0 = a · b+ a · (−b), which shows that a · (−b) is the
inverse of a · b. Thus, a · (−b) = −ab.

3. Since b− c = b+ (−c) then
a · (b− c) = a · (b+ (−c)) = a · b+ a · (−c) = a · b− a · c

4. To demonstrate Newton’s binomial, we’ll adopt reasoning by induction.
a/ For n = 0, we have (a+ b) · 0 = 1A = C00 · a0b0.
b/ We assume that (a+ b)n =

∑n
k=0 Cnk ak · bn−k and show that :

(a+ b)n+1 =
n+1∑
k=0

Cn+1
k ak·bn+1−k = Cn+1

0 bn+1+Cn+1
1 a·bn+Cn+1

2 a2·bn−1+· · ·+Cn+1
n anb+Cn+1

n+1a
n+1.

Since (a+ b)n+1 = (a+ b) (a+ b)n = a · (a+ b)n + b · (a+ b)n then

a(a+ b)n = Cn0 a · bn + Cn1 a2 · bn−1 + Cn2 a3 · bn−2 + · · ·+ Cn−1n anb+ Cnn+1a
n+1.
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and

b(a+ b)n = Cn0 · bn+1 + Cn1 ba · bn−1 + Cn2 ba2 · bn−2 + · · ·+ Cn−1n ban−1b+ Cnnban.

On the other hand we have bakbl = akb−l+1, since ” · ” is commutative, and Cmn + Cmn+1 =
Cm+1
n+1 , by summing the two previous equalities we get :

(a+ b)n+1 = Cn0 bn+1+(Cn0 + Cn1 ) a·bn+(Cn1 + Cn2 ) a2 ·bn−1+· · ·+
(
Cnn−1 + Cnn

)
anb+Cnnan+1.

This leads to

(a+ b)n+1 = Cn+1
0 bn+1 + Cn+1

1 a · bn + Cn+1
2 a2 · bn−1 + · · ·+ Cn+1

n anb+ Cn+1
n+1a

n+1.

Hence the result.

Integral domain

Definition 2.1.2 An integral domain is a nonzero commutative ring A in which the product
of any two nonzero elements is nonzero i.e.
∀a, b ∈ A, a · b = 0⇒ a = 0 or b = 0

Example 2.1.1 1. (A,+, ·) is an integral domain for A = Z,Q,R and C.
2. For A = C([0, 1] ,R) = {f : [0, 1] / f continue}. The ring (A,+, ·) defined above is

not an integral domain. Indeed Consider the functions f and g in A given by

f(x) = { x− 1 if x ∈
[
0, 1

2

[
0 if x ∈

[
1
2
, 1
]
. g(x) = { 0 if x ∈

[
0, 1

2

[
−x+ 1 if x ∈

[
1
2
, 1
]
.

We can see that f 6= 0 and g 6= 0 but f ·g = 0 since forallx ∈ [0, 1] we have f(x)·g(x) = 0.

2.2 Subrings and the Subring Test.

Let (A,+, ·) be a ring and let A′ be a non-empty subset of A. Then (A′,+, ·) is a subring
of A if it is a ring with respect to the operations it inherits from A.

The Subring Test

Let (A,+, ·) be a ring and let A′ ⊆ A. Then (A,+, ·) is a subring of A if (and only if) A′ is
non-empty and the following hold :

1. (A′,+) is an abelian subgroup of (A,+),
2. ∀a, b ∈ A′, a · b ∈ A′.

Example 2.2.1 1. Z and Q are subrings of R,
2. R, regarded as numbers of the form a+ 0i for a ∈ R, is a subring of C.
3. In the polynomial ring R[x], the polynomials of even degree form a subring but the poly-

nomials of odd degree do NOT form a subring because x · x = x2 is not of odd degree.
4. nZ = {nk| k ∈ Z} is a subring of Z for any n ∈ N.
5. The null ring is the ring {0} formed by a single element.
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Example 2.2.2 1. Let be the set Q[
√
2] =

{
a+ b

√
2/a ∈ Q, b ∈ Q

}
.

Q[
√
2] is a ring. We check that Q is a subring of Q[

√
2] for usual addition and multipli-

cation.
2. The ring Z/nZ

Let’s fix an integer n ≥ 2. Consider the additive group Z/nZ =
{
0, 1, · · · , n− 1

}
. We’ve

already seen that the additive group Z/nZ is abelian. We define a multiplication in Z/nZ
from that in Z by posing : x·̇y = xy for all x, y ∈ Z/nZ. This multiplication is well
defined, regardless of the representatives chosen. It’s immediate to check that Z/nZ is a
unitary commutative ring.

2.3 Ring homomorphism

Definition 2.3.1 Let (A,+, ·) and (B,+, ·) be two rings of identities elements 1A and 1B
respectively and f : A→ B be a map.
We say that f is a if ∀a, b ∈ A we have

1. f(a+ b) = f(a) + f(b),
2. f(a · b) = f(a) · f(b),
3. f(1A) = 1B.

If in addition f is a bijection, then its inverse f−1 is also a ring homomorphism. In this case,
f is called a ring isomorphism, and the rings A and B are called isomorphic.
From the standpoint of ring theory, isomorphic rings cannot be distinguished.

3 Fields and integral domains

Definition of a field :

Definition 3.0.1 Let K a set, a structure (K,+, ·), where + and · are binary operations on
K is a field if :

1. (K,+) is an abelian group. (Identity noted 0K.),
2. (K − {0} , ·) is an abelian group. (Identity noted 1K.),
3. The distributive laws hold (the ” · ” is distributive with respect to +).

Proposition 3.0.1 Let (K,+, ·) be a ring.
(K,+, ·) is a field if, and only if, every non-zero element of K is invertible, i.e. for all a ∈ K
with a 6= 0 there exists 1/a ∈ K (alternatively written a−1) such that a · 1/a = 1/a · a = 1.

Definition 3.0.2 In a commutative ring we call an element a 6= 0 a zero divisor if there exists
b 6= 0 such that a · b = 0.
A commutative ring with identity in which 0 6= 1 is an integral domain (ID) if it has no zero
divisors.
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Examples of integral domains

1. We claim that any field is an integral domain. To prove this, assume that (K,+, ·) is a
field and let a, b ∈ K be such that a · b = 0. If a 6= 0 then a−1 exists, and we have

0 = a−1 · 0 = a−1 · (a · b) =
(
(a−1 · a) · b

)
= 1 · b = b.

and likewise with the roles of a and b reversed.
2. Z and K[x] are integral domains which fail to be fields.
3. K2, with coordinatewise addition and multiplication is a commutative ring with identity

which fails to be an integral domain (and so is not a field) :

(0, 1) · (1, 0) = (0, 0).

3.1 Subfield

If (K,+, ·) is a field, a sub-field of K is a sub-ring K ′ of K such that for any non-zero
element x of K ′, we have x−1 ∈ K ′, (K ′,+, ·) is then a field.

Example 3.1.1 1. Q,R et C are fields, but not Z (2 is not invertible).
2. Q[

√
2] is a subfield of R.

Proposition 3.1.1 Characterization of sub-fields Let (K,+, ·) a field. A non-empty part
K ′ of K is a sub-field of K, if and only if

1. 1K ∈ K ′

2. ∀x, y ∈ K ′; x− y ∈ K ′.
3. ∀x, y ∈ K ′; x · y ∈ K ′.
4. ∀x ∈ K ′; x−1 ∈ K ′.
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