Linear Maps and Matrices

14 avril 2024

1 Linear mappings

The vector mapping $f: E \rightarrow F$, (where E and F are vector spaces over \mathbb{K}) is said to be linear if the following conditions hold :

1. $\forall u, v \in E: f(u+v)=f(u)+f(v)$.
2. $\forall u \in E, \forall \lambda \in \mathbb{K}, \quad f(\lambda u)=\lambda f(u)$.

This definition is equivalent to :

$$
\forall u, v \in E, \forall \lambda, \beta \in \mathbb{K}, \quad f(\lambda u+\beta v)=\lambda f(u)+\beta f(v)
$$

Example 1.0.1 1. The identity map on E, which sends each $u \in E$ to u, is denoted I_{E}, or just I if the vector space E is clear from context.
Note that all linear maps (not just the identity) send zero to zero.
Proof 1.0.1 For any $u \in E$ we have $f(u)=f\left(u+0_{E}\right)=f(u)+f\left(0_{E}\right)$. so by subtracting $f(u)$ from both sides we obtain $f\left(0_{E}\right)=0_{F}$.
2. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ a map defined by $f(x, y)=(x+y, x-y)$. f is linear.

Indeed, let $u=(x, y), v=\left(x_{0}, y_{0}\right) \in \mathbb{R}^{2}$ and let $\alpha, \beta \in \mathbb{R}$:

$$
\begin{aligned}
f(\alpha u+\beta v) & =f\left(\alpha(x, y)+\beta\left(x_{0}, y_{0}\right)\right) \\
& =f\left(\left(\alpha x+\beta x_{0}, \alpha y+\beta y_{0}\right)\right) \\
& =\left(\alpha x+\beta x_{0}+\alpha y+\beta y_{0}, \alpha x+\beta x_{0}-\alpha y-\beta y_{0}\right) \\
& =\left(\alpha(x+y)+\beta\left(x_{0}+y_{0}\right),\left(\alpha(x-y)+\beta\left(x_{0}-y_{0}\right)\right.\right. \\
& =\alpha(x+y, x-y)+\beta\left(x_{0}+y_{0}, x_{0}-y_{0}\right) \\
& =\alpha f((x, y))+\beta f\left(\left(x_{0}, y_{0}\right)\right)
\end{aligned}
$$

3. $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, defined by $f(x, y)=x^{2}-y^{2}$ is nonlinear because $f((1,0))+f((-1,0))=$ $1+1=2 \neq f((1,0)+(-1,0))=f((0,0))=0$.
4. The mapping $f(x, y)=\left(x^{2} \sin y-\cos \left(x^{2}-1\right), x^{2}+y^{2}+1\right)$ is nonlinear. To see this, we computed that
$f((3,0))=(-\cos 8,10) \neq 3 f((1,0))=(-3,6)$. Then f is not linear.
Remark 1.0.1 One useful fact regarding linear maps is that they are uniquely determined by their action on a basis. Let $\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ be a basis for a vector space E. Then

$$
\forall u \in E: \quad u=\sum_{i=1}^{n} \alpha_{i} v_{i} e t \quad f(u)=f\left(\sum_{i=1}^{n} \alpha_{i} v_{i}\right)=\sum_{i=1}^{n} \alpha_{i} f\left(v_{i}\right),
$$

1.1 Isomorphisms

Observe that the definition of a linear map is suited to reflect the structure of vector spaces, since it preserves vector spaces two main operations, addition and scalar multiplication. In algebraic terms, a linear map is said to be a homomorphism of vector spaces. An invertible homomorphism where the inverse is also a homomorphism is called an isomorphism. If there exists an isomorphism from E to F, then E and F are said to be isomorphic, and we write $E \cong F$. Isomorphic vector spaces are essentially "the same" in terms of their algebraic structure. It is an interesting fact that finite-dimensional vector spaces of the same dimension over the same field are always isomorphic.

Operations on linear mappings

Definition 1.1.1 The set of linear mappings from E into F is denoted $\mathcal{L}(E, F)$. Let's equip $\mathcal{L}(E, F)$ with the addition of mappings $(f+g)$ and multiplication by a scalar ($\alpha . f$) as follows:

1. $\forall x \in E:(f+g)(x)=f(x)+g(x)$,
2. $\forall x \in E, \forall \alpha \in \mathbb{R}:(\alpha . f)(x)=\alpha f(x)$.

Proposition 1.1.1 $\mathcal{L}(E, F)$ with addition and multiplication has a vector space structure on \mathbb{R}.

Linear maps can be added and scaled to produce new linear maps. That is, if f and g are linear maps from E into F, and $\alpha \in \mathbb{K}$, it is straightforward to verify that $f+g$ and $\alpha \cdot f$ are linear maps from E into F. Since addition and scaling of functions satisfy the usual commutativity/ associativity/distributivity rules, the set of linear maps from E into F is also a vector space over \mathbb{K}. The additive identity here is the zero map which sends every $u \in E$ to 0_{F}.

Theoreme 1.1.1 (Composition) Let E, F and G be vector spaces over a common field \mathbb{K}, and suppose f be a linear map from E to F and and g a linear map from F to G. Then $g \circ f$ is a linear map from E to G.

Theoreme 1.1.2 Let f be an isomorphism from E to F. Then f^{-1} is an isomorphism from F to E.

Proposition 1.1.2 Let f be an automorphism of E (isomorphism from E to E). Then f^{-1} is an automorphism of E. Let f and g be two automorphisms of E, then $g \circ f$ is an automorphism of E and we have $(g \circ f)^{-1}=f^{-1} \circ g^{-1}$.

Proposition 1.1.3 If f from E to F is a linear map then:

1. $\forall u \in E: f(-u)=-f(u)$.
2. $f\left(0_{E}\right)=0_{F}$.

1.2 Nullspace and Range

1.2.1 Nullspace

Definition 1.2.1 If $f: E \rightarrow F$ is a linear map, the nullspace of f is the set of all vectors in E that get mapped to zero :

$$
\operatorname{null}(f)=\left\{u \in E, f(u)=0_{F}\right\}=f^{-1}\left(\left\{0_{F}\right\}\right) .
$$

Proposition 1.2.1 If $f: E \rightarrow F$ is a linear map, then null (f) is a subspace of E.
Proof 1.2.1 1. We have already seen that $f\left(0_{E}\right)=0_{F}$. So $0_{E} \in \operatorname{null}(T)$.
2. If $u, v \in \operatorname{null}(T)$, then $f(\alpha u+v)=\alpha f(u)+f(v)=0_{F}+0_{F}=0_{F}$. So $\alpha u+v \in \operatorname{null}(f)$.

Proposition 1.2.2 A linear map $f: E \rightarrow F$ is injective if and only if null $(f)=\left\{0_{E}\right\}$.
Proof 1.2.2 Assume f is injective. We have seen that $f\left(0_{E}\right)=0_{F}$, so $0_{E} \in \operatorname{null}(f)$, and moreover if $f(v)=0_{F}=f\left(0_{E}\right)$ the injectivity of f implies $v=0_{E}$, so null $(f)=\left\{0_{E}\right\}$.
Conversely, assume null $(f)=\left\{0_{E}\right\}$, and suppose $f(u)=f(v)$ for some $u, v \in E$.
Then $0=f(u)-f(v)=f(u-v)$, so $u-v \in \operatorname{null}(f)$, which by assumption implies $u-v=0_{E}$, i.e. $u=v$. Hence f is injective.

1.2.2 Range

Definition 1.2.2 The range of f is the set of all possible outputs of f :

$$
\operatorname{range}(f)=\{f(u): \quad u \in E\}=f(E)
$$

Proposition 1.2.3 If $f: E \rightarrow F$ is a linear map, then range (f) is a subspace of F.
Proof 1.2.3 1. We have already seen that $f\left(0_{E}\right)=0_{F}$, so $0_{F} \in \operatorname{range}(f)$.
2. If $w, z \in \operatorname{range}(f)$, there exist $u, v \in E$ such that $w=f(u)$ and $z=f(v)$. Then $f(u+v)=f(u)+f(v)=w+z$ so $w+z \in \operatorname{range}(f)$.
3. If $v \in \operatorname{range}(f), \alpha \in \mathbb{K}, \exists u \in E$ such that $v=f(u)$. Then $f(\alpha u)=\alpha f(u)=\alpha v$ so $\alpha v \in \operatorname{range}(f)$. Thus range (f) is a subspace of F.

Theoreme 1.2.1 Let $f: E \rightarrow F$ be a linear map. So :

1. f is injective $\Leftrightarrow \operatorname{null}(f)=\left\{0_{E}\right\}$.
2. f is surjective $\Leftrightarrow \operatorname{range}(f)=F$.

Example 1.2.1 Determine the image and the nullspace of the map f from \mathbb{R}^{3} to \mathbb{R}^{2} defined by:

$$
f(x, y, z)=(x-y-z, x+y+z), \quad \text { for } \quad \text { all }(x, y, z) \in \mathbb{R}^{3} .
$$

Deduce that f is not injective and that f is surjective. We have :

$$
\begin{aligned}
\operatorname{null}(f) & =\left\{(x, y, z) \in \mathbb{R}^{3}, f((x, y, z))=(0,0)\right\} \\
& =\left\{(x, y, z) \in \mathbb{R}^{3},(x-y-z, x+y+z)=(0,0)\right\} \\
& =\left\{(x, y, z) \in \mathbb{R}^{3}, x=0 \text { et } z=-y\right\} \\
& =\left\{(0, y,-y) \in \mathbb{R}^{3}, y \in \mathbb{R}\right\} \\
& =\operatorname{span}\{(0,1,-1)\}
\end{aligned}
$$

C. H .
$\operatorname{null}(f) \neq\{(0,0,0)\}$, therefore f is not injective.

$$
\begin{aligned}
\operatorname{range}(f) & =\left\{f(x, y, z):(x, y, z) \in \mathbb{R}^{3}\right\} \\
& =\{(x-y-z, x+y+z): x, y, z \in \mathbb{R}\} \\
& =\{x(1,1)+y(-1,1)+z(-1,1): x, y, z \in \mathbb{R}\} \\
& =\operatorname{span}\{(1,1),(-1,1),(-1,1)\} \\
& =\operatorname{span}\{(1,1),(-1,1)\}
\end{aligned}
$$

$\operatorname{range}(f)=\operatorname{span}\{(1,1),(-1,1)\}=\mathbb{R}^{2}$, so f is surjective.

1.3 Linear mappings in finite dimension

Proposition 1.3.1 Let f be a linear map of E into F and $B=\left\{e_{1}, e_{2}, \cdots, e_{n}\right\}$ be a base of E. Then the image by f of B is a generating family of range (f), that is to say

$$
\operatorname{range}(f)=\operatorname{span}\left\{f\left(e_{1}\right), f\left(e_{2}\right), \cdots, f\left(e_{n}\right)\right\}
$$

Remark 1.3.1 The family $\left\{f\left(e_{1}\right), f\left(e_{2}\right), \cdots, f\left(e_{n}\right)\right\}$ is not necessarily free, so the family $\left\{f\left(e_{1}\right), f\left(e_{2}\right), \cdots, f\left(e_{n}\right)\right\}$ is therefore not a basis of range (f)

Theoreme 1.3.1 Let $f: E \rightarrow F$ be a linear map with $\operatorname{dim}(E)=n$ (finite). So :

$$
\operatorname{dim}(E)=\operatorname{dim}(\operatorname{null}(f))+\operatorname{dim}(\operatorname{range}(f))
$$

Proposition 1.3.2 Let $f: E \rightarrow F$ be a linear map, if $\operatorname{dim}(E)=\operatorname{dim}(F)=n$, then the following properties are equivalent :

1. f is bijective.
2. f is injective.
3. f is surjective.

1.4 Rank of a linear map

Definition 1.4.1 Let $f: E \rightarrow F$ be a linear map. We call rank of f the dimension of range (f), $\operatorname{rank}(f)=\operatorname{dim}(\operatorname{Im}(f))=\operatorname{dim}(f(E))$.

$$
\operatorname{dim} E=\operatorname{rank}(f)+\operatorname{nullity}(f)
$$

such that nullity $(f)=\operatorname{dimension}$ of its nullspace Null(f).
Remark 1.4.1 If B is a basis of E then the rank of f is the number of linearly independent vectors in $f(B)$, the image by f of the basis B.

Exercice 1.4.1 Let n be a natural number and let f be a linear map defined by $f(P)=P^{\prime}, \quad \forall P \in \mathbb{R}_{n}[X]$.

1. Show that f is an endomorphism of $\mathbb{R}_{n}[X]$.
2. Determine the nullspace of f.
3. Deduce the dimension of range (f).
4. Check that range $(f)=\mathbb{R}_{n-1}[X]$.
C. H.

2 Matrices

Definition 2.0.1 A matrix is a two-dimensional array of numbers. An m-rows-by-n-columns (abbreviated $m \times n$) matrix A is represented with a block of numbers :

$$
A=\left(a_{i j}\right)_{m \times n}=\left(\begin{array}{cccc}
a_{1,1} & a_{1,2} & \cdots & a_{1, n} \\
a_{2,1} & a_{2,2} & \cdots & a_{1, n} \\
\vdots & \ddots & \ddots & \vdots \\
a_{m, 1} & a_{m, 2} & \cdots & a_{m, n}
\end{array}\right)
$$

where $a_{i j}$ is the entry in the $i-t h$ row and the $j-t h$ column of A.
Example 2.0.1 $n=2, p=3$:

$$
A=\left(\begin{array}{ccc}
1 & 2 & 3 \\
0 & -1 & 5
\end{array}\right)
$$

$a_{12}=2, \quad a_{23}=5$
Definition 2.0.2 1. Two matrices are equal when they have the same size and the corresponding coefficients are equal.
2. The set of n row and p column matrices with coefficients in \mathbb{K} is denoted $M_{n, p}(\mathbb{K})$. The elements of $M_{n, p}(\mathbb{R})$ are called real matrices.

2.1 Types of matrices

Different types of matrices are given below :

1. Row Matrix : A Matrix having only one row is called a Row Matrix, E.g. $\left(a_{11}, a_{12}, \cdots, a_{1 p}\right)$.
2. Column Matrix : A Matrix having only one Column is called a Column Matrix,E.g. $\left(\begin{array}{c}a_{11} \\ a_{21} \\ \vdots \\ a_{n 1}\end{array}\right)$
3. Null Matrix : $A=\left(a_{i j}\right)_{m \times n}$ such that $a_{i j}=0, \forall i$ and j. Then A is called a Zero Matrix and it is denoted by $0_{m \times n}$.
4. Rectangular Matrix :If $A=\left(a_{i j}\right)_{m \times n}$, and $m \neq n$ then the matrix A is called a Rectangular Matrix.
5. Square Matrix :If $A=\left(a_{i j}\right)_{m \times n}$, and $m=n$ then the matrix A is called a Square Matrix.
6. Identity Matrix or Unit matrix

$$
I_{n}=\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right)
$$

n is the dimension of the matrix.
C. H.
7. Lower triangular matrix, L

$$
L=\left(\begin{array}{ccc}
L_{11} & 0 & 0 \\
L_{21} & L_{22} & 0 \\
L_{31} & L_{32} & L_{33}
\end{array}\right)
$$

8. Upper triangular matrix, U

$$
U=\left(\begin{array}{ccc}
U_{11} & U_{12} & U_{13} \\
0 & U_{22} & U_{23} \\
0 & 0 & U_{33}
\end{array}\right)
$$

9. Diagonal matrix : A Square Matrix is said to be diagonal matrix, if $a_{i j}=0$ for $i \neq j$ i.e. all the elements except the principal diagonal elements are zeros.

Note :

a/ Diagonal matrix is both lower and upper triangular.
b/ If $d_{1}, d_{2}, \cdots, d_{n}$ are the diagonal elements in a diagonal matrix it can be represented as

$$
\operatorname{diag}\left(d_{1}, d_{2}, \cdots, d_{n}\right) \quad . \text { E.g. } \quad \operatorname{diag}(3,2,-1)=\left(\begin{array}{ccc}
3 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

10. A square matrix A is said to be symmetrical if : $a_{i j}=a_{j i}$ for all i different from j

3 Operations on matrices

3.1 Transpose of a Matrix

The transpose of an $m \times n$ matrix $A=\left(a_{i j}\right)$ is defined as the $n \times m$ matrix $B=\left(b_{i j}\right)$, with $b_{i j}=a_{j i}$ for $1 \leq i \leq n$ and $1 \leq j \leq m$. The transpose of A is denoted by A^{T}.

Definition 3.1.1 That is, by the transpose of an $m \times n$ matrix A, we mean a matrix of order $n \times m$ having the rows of A as its columns and the columns of A as its rows.

For example, if $A=\left(\begin{array}{ccc}3 & -2 & 5 \\ 1 & 7 & 0\end{array}\right)$ then $A^{T}=\left(\begin{array}{cc}3 & 1 \\ -2 & 7 \\ 5 & 0\end{array}\right)$ Thus, the transpose of a row vector is a column vector and vice-versa.

Theoreme 3.1.1 For any matrix A, we have $\left(A^{T}\right)^{T}=A$.

3.2 Addition of Matrices

Definition 3.2.1 Let A and B be two matrices of the same size $n \times p$. Then the sum $A+B$ is defined to be the matrix $C=A+B$ of size $n \times p$ with $c_{i j}=a_{i j}+b_{i j}$. In other words, we sum coefficient by coefficient.

Example 3.2.1 If

$$
A=\left(\begin{array}{cc}
3 & -2 \\
1 & 7
\end{array}\right), \quad B=\left(\begin{array}{cc}
0 & 5 \\
2 & -1
\end{array}\right), \quad C=\binom{-5}{2} .
$$

C. H.

Then

$$
A+B=\left(\begin{array}{cc}
3+0 & -2+5=3 \\
1+2=3 & 7-1=6
\end{array}\right)
$$

$A+C$ is not defined.

3.3 Multiplying a Scalar to a Matrix

Let $A=\left(a_{i j}\right)$ of $M_{n p}(\mathbb{K})$, for a scalar α, we define αA by the matrix $\left(\alpha a_{i j}\right)$.
Example 3.3.1 If

$$
A=\left(\begin{array}{ccc}
3 & 1 & 2 \\
0 & -4 & -2
\end{array}\right)
$$

and $\alpha=-3$. Then

$$
\alpha A=-3 A=\left(\begin{array}{ccc}
-9 & -3 & -6 \\
0 & 12 & 6
\end{array}\right)
$$

The matrix (-1) A is the opposite of A and is denoted $-A$. The difference $A-B$ is defined by $A+(-B)$.

Below are some basic algebraic properties of matrix addition/scalar multiplication.
Theoreme 3.3.1 Let A, B, C be matrices of the same size and let α, β be scalars. Then
(a) $A+B=B+A$,
(d) $\alpha(A+B)=\alpha A+\alpha B$
(b) $(A+B)+C=A+(B+C)$,
(e) $(\alpha+\beta) A=\alpha A+\beta A$,
(c) $A+0=A$,
(f) $\alpha(\beta A)=(\alpha \beta) A$

3.4 Multiplication of matrices / Product

Matrices can be multiplied only if the number of columns of the left matrix equals the number of rows of the right matrix. In other words, an n-by- p matrix on the left can only be multiplied by an p-by- q matrix on the right. The resulting matrix will be n-by- q.
In general, an element in the resulting product matrix, say in row i and column j, is obtained by multiplying and summing the elements in row i of the left matrix with the elements in column j of the right matrix.

Definition 3.4.1 Product of two matrices Let $A=\left(a_{i j}\right)$ be a matrix $n \times p$ and $B=\left(b_{i j}\right)$ be a matrix $p \times q$. Then the product $C=A B$ is a $n \times q$ matrix whose coefficients $c_{i j}$ are defined by:

$$
c_{i j}=\sum_{k=1}^{p} a_{i k} b_{k j}
$$

The coefficient can be written in a more elaborate way :

$$
c_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\cdots+a_{i k} b_{k j}+\cdots+a_{i p} b_{p j} .
$$

It is convenient to arrange the calculations as follows :

$$
\begin{array}{r}
\left(\begin{array}{c}
b_{1 j} \\
\times \\
\times \\
\times
\end{array}\right) \leftarrow B \\
A \rightarrow\left(\begin{array}{cc}
\times \\
\times \\
a_{i 1} \times & \times \\
\times \\
\times & c_{i j}
\end{array}\right) \leftarrow A B
\end{array}
$$

Example 3.4.1 1 .

$$
A=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 4
\end{array}\right), \quad B=\left(\begin{array}{cc}
1 & 2 \\
-1 & 1 \\
1 & 1
\end{array}\right)
$$

A is an $2-b y-3$ matrix, B is an $3-b y-2$ matrix, then $A B$ is an $2-b y-2$ matrix and we have :

$$
\begin{gathered}
\qquad\left(\begin{array}{cc}
1 & 2 \\
-1 & 1 \\
1 & 1
\end{array}\right) \leftarrow B \\
\qquad A \rightarrow\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 4
\end{array}\right)\left(\begin{array}{cc}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{array}\right) \leftarrow A B \\
c_{11}=1 \times 1+2 \times(-1)+3 \times 1=2, \quad c_{12}=1 \times 2+2 \times 1+3 \times 1=7 \\
c_{21}=2 \times 1+3 \times(-1)+4 \times 1=3, \quad c_{22}=2 \times 2+3 \times 1+4 \times 1=11 .
\end{gathered}
$$

Then

$$
A B=\left(\begin{array}{cc}
2 & 7 \\
3 & 11
\end{array}\right)
$$

2. $u=\left(a_{1} a_{2} \cdots a_{n}\right), \quad v=\left(\begin{array}{c}b_{1} \\ b_{2} \\ \vdots \\ b_{n}\end{array}\right)$
$u v$ is a matrix of size 1×1 whose single coefficient is $a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{n} b_{n}$. This number is called the scalar product of vectors u and v.

Remark 3.4.1 1. $A B=0$ does not imply $A=0$ or $B=0$. Let

$$
A=\left(\begin{array}{cc}
0 & -1 \\
0 & 5
\end{array}\right), \quad B=\left(\begin{array}{cc}
2 & -3 \\
0 & 0
\end{array}\right)
$$

Calculate $A B$.
C. H .
2. $A B=A C$ does not imply $B=C$. Let

$$
A=\left(\begin{array}{cc}
0 & -1 \\
0 & 3
\end{array}\right), \quad B=\left(\begin{array}{cc}
4 & -1 \\
5 & 4
\end{array}\right), \quad C=\left(\begin{array}{ll}
2 & 5 \\
5 & 4
\end{array}\right)
$$

Calculate $A B$ and $A C$
Proposition 3.4.1 Let $A, B, C \in M_{n}(\mathbb{K})$, be square matrices of order n, then

1. $A(B C)=(A B) C$ (associativity)
2. $A(B+C)=A B+A C$ (left distributivity) ;
3. $(B+C) A=B A+C A$ (right-hand distributivity)
4. $\exists I_{n} \in M_{n}$ such that $A I=I A=A$
5. Matrix multiplication is generally not commutative.

Warning! If A and B don't switch, i.e. if $A B \neq B A$

$$
(A+B)^{2}=(A+B)(A+B)=A^{2}+B A+A B+B^{2} \neq A^{2}+2 A B+B^{2}
$$

4 Row echelon form

4.1 Elementary row operations

Elementary row operations are used to transform a system of linear equations into a new system that has the same solutions as the original one (i.e., into an equivalent system).
A system of n linear equations in m unknowns is written in matrix form as $A x=b$, where A is the $n \times m$ matrix of coefficients; x is the $m \times 1$ vector of unknowns and b is the $n \times 1$ vector of constants.
Our goal is to begin with the matrix A and apply operations that respect row equivalence until we have a matrix in Reduced Row Echelon Form (RREF). The three elementary row operations are :

1. (Row Swap) Exchange any two rows.
2. (Scalar Multiplication) Multiply any row by a constant.
3. (Row Sum) Add a multiple of one row to another row.

4.1.1 Row echelon form

Definition 4.1.1 A matrix $A \in M_{m, n}(\mathbb{K})$, of order $m \times n$ and with coefficients in a field \mathbb{K}, is said to be in the row echelon form if the number of zero coefficients starting each row increases as we pass from a row R_{i} to a row R_{j}, for $i<j$.
The first non-zero coefficient in a row of a matrix is called pivot.
Example 4.1.1 Consider the following matrices

$$
A=\left(\begin{array}{ccccccc}
1 & 0 & 0 & 0 & -1 & 2 & 3 \\
0 & 1 & -1 & 0 & 0 & 0 & 1 \\
-1 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 2 & -1 & 0 \\
0 & 0 & 0 & 0 & 1 & 2 & 3 \\
0 & 0 & 0 & 0 & 0 & -4 & 5
\end{array}\right), \quad B=\left(\begin{array}{ccccccc}
1 & 0 & 0 & 0 & -1 & 2 & 3 \\
0 & 1 & -1 & 0 & 0 & 0 & 1 \\
0 & 0 & 2 & -1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 2 & -1 & 0 \\
0 & 0 & 0 & 0 & 1 & 2 & 3 \\
0 & 0 & 0 & 0 & 0 & -4 & 5
\end{array}\right)
$$

C. H .
and

$$
C=\left(\begin{array}{ccccccc}
1 & 0 & 0 & 0 & -1 & 2 & 3 \\
0 & 1 & -1 & 0 & 0 & 0 & 1 \\
0 & 0 & 2 & -1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 2 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

1. In matrix A, row R_{2} begins with 0 , but row R_{3} begins with -1 . So, going from row R_{2} to row R_{3}, the number of zeros is not increasing. Thus, the matrix A is not in (REF).
2. In matrix B, rows R_{4} and R_{5} begin with the same number of 0 , which equals to 4 . So, as we move from line R_{4} to line R_{5}, the number of zeros is constant, i.e. it is not increasing. Thus, the matrix B is not in (REF).
3. The number of zero coefficients starting the rows of matrix C is increasing, from row to row. Thus, matrix C is in (REF).

4.1.2 Row Reduced Form of a Matrix

Definition 4.1.2 A matrix A is said to be in the row reduced form if

1. the first non-zero entry in each row of A is 1 ;
2. the column containing this 1 has all its other entries zero.

A matrix in the row reduced form is also called a row reduced matrix.

Example 4.1.2

$$
M=\left(\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right), \quad N=\left(\begin{array}{lllllll}
1 & 0 & 0 & 0 & 0 & 0 & 3 \\
0 & 1 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

1. In the matrix M, the pivot of row 4 is $m_{4,6}=1$, but it is not the only non-zero coefficient in its column, since $m_{3,6}=1$. So matrix M is not reduced.
2. The matrix N is reduced, since all the pivots are the only non-zero coefficients in their respective columns.

Every matrix can be put in row echelon form by applying a sequence of elementary row operations.

4.1.3 Method to get the row-reduced echelon form of a given matrix

Let A be an $m \times n$ matrix. Then the following method is used to obtain the row-reduced echelon form of the matrix A.

1. Step 1 : Consider the first column of the matrix A. If all the entries in the first column are zero, move to the second column.
Else, find a row, say ith row, which contains a non-zero entry in the first column. Now,
interchange the first row with the ith row. Suppose the non-zero entry in the $(1,1)$ position is $\alpha \neq 0$. Divide the whole row by α so that the (1,1)-entry of the new matrix is 1 . Now, use the 1 to make all the entries below this 1 equal to 0 .
2. Step 2 : Ignore the first row and first column. Start with the lower $(m-1) \times(n-1)$ submatrix of the matrix obtained in the first step and proceed as in step 1.
3. Step 3 : Keep repeating this process till we obtain an equivalent where all the entries below a particular row, say r, are zero.
The integer r is the largest integer such that $a_{r r} \neq 0$ and $a_{i j}=0$ for $i \geq r+1$.
The final matrix is the row-reduced echelon form of the matrix A.
Example 4.1.3 Let

$$
A=\left(\begin{array}{cccc}
2 & 1 & 1 & 2 \\
1 & 0 & -1 & -1 \\
0 & 1 & 1 & 0
\end{array}\right)
$$

Let's proceed with some elementary operations to produce matrix in the row echelon form

$$
\begin{array}{rlrl}
R_{2} \leftrightarrow R_{1} & A & \sim & \left(\begin{array}{cccc}
1 & 0 & -1 & -1 \\
2 & 1 & 1 & 2 \\
0 & 1 & 1 & 0
\end{array}\right) \\
R_{2}-2 R_{1} & \sim & \left(\begin{array}{cccc}
1 & 0 & -1 & -1 \\
0 & 1 & 3 & 4 \\
0 & 1 & 1 & 0
\end{array}\right) \\
R_{3}-R_{2} & & \sim\left(\begin{array}{cccc}
1 & 0 & -1 & -1 \\
0 & 1 & 3 & 4 \\
0 & 0 & -2 & -4
\end{array}\right) \\
2 R_{2}, \quad 3 R_{3} & \sim \\
R_{3}+R_{2} & \sim A_{5}= & \left(\begin{array}{cccc}
1 & 0 & -1 & -1 \\
0 & 1 & 6 & 8 \\
0 & 0 & -6 & -12
\end{array}\right) \\
& & \left(\begin{array}{cccc}
1 & 0 & -1 & -1 \\
0 & 1 & 6 & 8 \\
0 & 0 & 0 & -4
\end{array}\right)
\end{array}
$$

Note that the reduced form of a matrix in a row echelon form is obtained using the following steps :

1. Multiply rows R_{i} of non-zero pivots a_{i} by $\lambda=\frac{1}{a_{i}}$, giving pivots all equal to 1 .
2. We proceed with elementary operations on the rows, starting from the bottom of the matrix, to eliminate the coefficients in the column of each pivot.
3. To obtain pivots equal to 1 , we perform the elementary operation $-\frac{1}{4} R_{3}$ on A_{5}.

$$
A_{5}=\left(\begin{array}{cccc}
1 & 0 & -1 & -1 \\
0 & 1 & 6 & 8 \\
0 & 0 & 0 & -4
\end{array}\right) \stackrel{-\frac{1}{4} R_{3}}{\Longrightarrow} A_{6}=\left(\begin{array}{cccc}
1 & 0 & -1 & -1 \\
0 & 1 & 6 & 8 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

2. Elimination of coefficients above the pivot in the pivot column. We then perform the following elementary operations : $R_{2}-8 R_{3}$ and $R_{1}+R_{3}$.

$$
A_{6}=\left(\begin{array}{cccc}
1 & 0 & -1 & -1 \\
0 & 1 & 6 & 8 \\
0 & 0 & 0 & 1
\end{array}\right) \stackrel{R_{2}-8 R_{3}}{\underset{R_{1}+R_{3}}{\Longrightarrow}} A_{7}=\left(\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 1 & 6 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

We then obtain the matrix A_{7}, which is the row reduced form of the matrix A.

4.2 Rank of a Matrix

Definition 4.2.1 Row rank of a Matrix

The number of non-zero rows in the row reduced form of a matrix is called the row-rank of the matrix.
For a matrix A, we write 'row $-\operatorname{rank}(A)^{\prime}$ to denote the row-rank of A.
Example 4.2.1 Find the rank of the matrix $A=\left(\begin{array}{ccc}2 & 3 & 7 \\ 3 & -2 & 4 \\ 1 & -3 & -1\end{array}\right)$ by reducing it to Echelon form.
Solution : Applying row transformations on A.

$$
\begin{array}{rlrl}
R_{1} \leftrightarrow R_{3} & A & \sim\left(\begin{array}{ccc}
1 & -3 & -1 \\
3 & -2 & 4 \\
2 & 3 & 7
\end{array}\right) \\
R_{2}=R_{2}-3 R_{1}, \quad R_{3}=R_{3}-2 R_{1} & A & \sim\left(\begin{array}{ccc}
1 & -3 & -1 \\
0 & 7 & 7 \\
0 & 9 & 9
\end{array}\right) \\
R_{2}=R_{2} / 7, \quad R_{3}=R_{3} / 9 & & \sim\left(\begin{array}{ccc}
1 & -3 & -1 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{array}\right) \\
R_{3}=R_{3}-R_{2} & & \sim\left(\begin{array}{ccc}
1 & -3 & -1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right)
\end{array}
$$

This is the Echelon form of matrix A. The rank of a matrix $A=$ Number of non-zero rows $=2$.

Note

In the previous example we have $A \sim A_{7}$, Consequently, the rank of the matrix A is equal to 3 .

5 The inverse of a matrix

An $n \times n$ matrix A is invertible if there is a matrix B such that $A B=B A=I_{n}$.
In that case, B is the inverse of A and we write $A^{-1}=B$.
Theoreme 5.0.1 Suppose A and B are invertible. Then :

1. A^{-1} is invertible and $\left(A^{-1}\right)^{-1}=A$.
2. A^{T} is invertible and $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$.
3. $A B$ is invertible and $(A B)^{-1}=B^{-1} A^{-1}$.
C. H.

5.1 Solving systems using matrix inverse

1. To solve $A x=b$, we do row reduction on $[A \mid b]$.
2. To solve $A X=I$, we do row reduction on $[A \mid I]$.
3. To compute A^{-1}
a/ Form the augmented matrix $[A \mid I]$.
b/ Compute the reduced echelon form.
c/ If A is invertible, the result is of the form $\left[I \mid A^{-1}\right]$.
Example 5.1.1 Let the system :

$$
\begin{aligned}
3 x_{3} & =9 \\
x_{1}+5 x_{2}-2 x_{3} & =2 \\
\frac{1}{3} x_{1}+2 x_{2} & =3
\end{aligned}
$$

First we write the system as an augmented matrix :

$$
\begin{aligned}
& (A \mid b)=\left(\begin{array}{ccc|c}
0 & 0 & 3 & 9 \\
1 & 5 & -2 & 2 \\
\frac{1}{3} & 2 & 0 & 3
\end{array}\right) \\
& R_{1} \leftrightarrow R_{3} \quad(A \mid b) \sim\left(\begin{array}{ccc|c}
\frac{1}{3} & 2 & 0 & \mid 3 \\
1 & 5 & -2 & 2 \\
0 & 0 & 3 & 9
\end{array}\right) \\
& 3 R_{1} \quad \sim\left(\begin{array}{ccc|c}
1 & 6 & 0 & \mid 9 \\
1 & 5 & -2 & 2 \\
0 & 0 & 3 & 9
\end{array}\right) \\
& R_{2}=R_{2}-R_{1} \quad \sim\left(\begin{array}{cccc}
1 & 6 & 0 & \mid 9 \\
0 & -1 & -2 & \mid-7 \\
0 & 0 & 3 & \mid 9
\end{array}\right) \\
& -R_{2} \quad \sim\left(\begin{array}{ccc|c}
1 & 6 & 0 & 9 \\
0 & 1 & 2 & 7 \\
0 & 0 & 3 & 9
\end{array}\right) \\
& R_{1}=R_{1}-6 R_{2} \quad \sim\left(\begin{array}{ccc|c}
1 & 0 & -12 & -33 \\
0 & 1 & 2 & \mid 7 \\
0 & 0 & 3 & 9
\end{array}\right) \\
& \frac{1}{3} R_{3} \quad \sim\left(\begin{array}{ccc|c}
1 & 0 & -12 & \mid-33 \\
0 & 1 & 2 & \mid 7 \\
0 & 0 & 1 & \mid 3
\end{array}\right) \\
& R_{1}=R_{1}+12 R_{3} \quad \sim\left(\begin{array}{ccc|c}
1 & 0 & 0 & \mid 3 \\
0 & 1 & 2 & 7 \\
0 & 0 & 3 & 9
\end{array}\right) \\
& R_{2}=R_{2}-2 R_{3} \quad \sim\left(\begin{array}{ccc|c}
1 & 0 & 0 & \mid 3 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 3
\end{array}\right)
\end{aligned}
$$

C. H.

Now we're in RREF and can see that the solution to the system is given by $x_{1}=3, \quad x_{2}=1$ and $x_{3}=1$; it happens to be a unique solution. Notice that we kept track of the steps we were taking; this is important for checking work!

Example 5.1.2 Find the inverse of $\left(\begin{array}{ccc}2 & 0 & 1 \\ 0 & -1 & -3 \\ -2 & 4 & 3\end{array}\right)$

Solution

$$
\begin{aligned}
&\left(A \mid I_{3}\right)=\left(\begin{array}{ccc|ccc}
2 & 0 & 1 & \mid 1 & 0 & 0 \\
0 & -1 & -3 & \mid 0 & 1 & 0 \\
-2 & 4 & 3 & 0 & 0 & 1
\end{array}\right) \\
& R_{3}=R_{3}+R_{1}\left(A \mid I_{3}\right) \sim \\
& R_{3}=R_{3}+4 R_{2} \sim\left(\begin{array}{cccc|ccc}
2 & 0 & 1 & 1 & 0 & 0 \\
0 & -1 & -3 & 0 & 1 & 0 \\
0 & 4 & 4 & 1 & 0 & 1
\end{array}\right) \\
& R_{2}=8 R_{2}-3 R_{3} \sim\left(\begin{array}{ccc|ccc}
2 & 0 & 1 & 1 & 0 & 0 \\
0 & -1 & -3 & 0 & 1 & 0 \\
0 & 0 & -8 & 1 & 4 & 1
\end{array}\right) \\
& R_{1}=8 R_{1}+R_{3} \sim \\
& R_{1}=\frac{1}{16} 8 R_{1}, \quad R_{2}=\frac{-1}{8} R_{2}, \quad R_{3}=\frac{-1}{8} R_{3} \sim \\
&\left(\begin{array}{ccc:ccc}
2 & 0 & 1 & 1 & 0 & 0 \\
0 & -8 & 0 & -3 & -4 & -3 \\
0 & 0 & -8 & 1 & 4 & 1
\end{array}\right) \\
&\left(\begin{array}{ccc|ccc}
16 & 0 & 8 & 9 & 4 & 1 \\
0 & -8 & 0 & -3 & -4 & -3 \\
0 & 0 & -8 & 1 & 4 & 1
\end{array}\right)
\end{aligned}
$$

The inverse is the right side.

$$
\left(\begin{array}{ccc}
9 / 16 & 1 / 4 & 1 / 16 \\
3 / 8 & 1 / 2 & 3 / 8 \\
-1 / 8 & -1 / 2 & -1 / 8
\end{array}\right)
$$

C. H.

