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1 Linear mappings
The vector mapping f : E → F , (where E and F are vector spaces over K) is said to be

linear if the following conditions hold :
1. ∀u, v ∈ E : f(u+ v) = f(u) + f(v).

2. ∀u ∈ E,∀λ ∈ K, f(λu) = λf(u).

This definition is equivalent to :

∀u, v ∈ E,∀λ, β ∈ K, f(λu+ βv) = λf(u) + βf(v).

Example 1.0.1 1. The identity map on E , which sends each u ∈ E to u, is denoted IE,
or just I if the vector space E is clear from context.
Note that all linear maps (not just the identity) send zero to zero.
Proof 1.0.1 For any u ∈ E we have f(u) = f(u+ 0E) = f(u) + f(0E).
so by subtracting f(u) from both sides we obtain f(0E) = 0F .

2. Let f : R2 → R2 a map defined by f(x, y) = (x+ y, x− y). f is linear.
Indeed, let u = (x, y), v = (x0, y0) ∈ R2 and let α, β ∈ R :

f(αu+ βv) = f(α(x, y) + β(x0, y0))

= f((αx+ βx0, αy + βy0))

= (αx+ βx0 + αy + βy0, αx+ βx0 − αy − βy0)
= (α(x+ y) + β(x0 + y0) , (α(x− y) + β(x0 − y0)
= α(x+ y, x− y) + β(x0 + y0, x0 − y0)
= αf((x, y)) + βf((x0, y0))

3. f : R2 → R2, defined by f(x, y) = x2 − y2 is nonlinear because f((1, 0)) + f((−1, 0)) =
1 + 1 = 2 6= f((1, 0) + (−1, 0)) = f((0, 0)) = 0.

4. The mapping f(x, y) = (x2 sin y − cos(x2 − 1), x2 + y2 + 1) is nonlinear. To see this, we
computed that
f ((3, 0)) = (− cos 8, 10) 6= 3f ((1, 0)) = (−3, 6). Then f is not linear.

Remark 1.0.1 One useful fact regarding linear maps is that they are uniquely determined by
their action on a basis. Let {v1, v2, · · · , vn} be a basis for a vector space E. Then

∀u ∈ E : u =
n∑

i=1

αiviet f(u) = f(
n∑

i=1

αivi) =
n∑

i=1

αif(vi),

1
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1.1 Isomorphisms

Observe that the definition of a linear map is suited to reflect the structure of vector spaces,
since it preserves vector spaces two main operations, addition and scalar multiplication. In
algebraic terms, a linear map is said to be a homomorphism of vector spaces. An invertible
homomorphism where the inverse is also a homomorphism is called an isomorphism. If there
exists an isomorphism from E to F , then E and F are said to be isomorphic, and we write
E ∼= F . Isomorphic vector spaces are essentially "the same" in terms of their algebraic structure.
It is an interesting fact that finite-dimensional vector spaces of the same dimension over the
same field are always isomorphic.

Operations on linear mappings

Definition 1.1.1 The set of linear mappings from E into F is denoted L(E,F ). Let’s equip
L(E,F ) with the addition of mappings (f + g) and multiplication by a scalar (α.f) as follows :

1. ∀x ∈ E : (f + g)(x) = f(x) + g(x),
2. ∀x ∈ E,∀α ∈ R : (α.f)(x) = αf(x).

Proposition 1.1.1 L(E,F ) with addition and multiplication has a vector space structure on
R.

Linear maps can be added and scaled to produce new linear maps. That is, if f and g are linear
maps from E into F , and α ∈ K, it is straightforward to verify that f + g and α · f are linear
maps from E into F . Since addition and scaling of functions satisfy the usual commutativity/
associativity/distributivity rules, the set of linear maps from E into F is also a vector space
over K. The additive identity here is the zero map which sends every u ∈ E to 0F .

Theoreme 1.1.1 (Composition) Let E,F and G be vector spaces over a common field K,
and suppose f be a linear map from E to F and and g a linear map from F to G. Then g ◦ f
is a linear map from E to G.

Theoreme 1.1.2 Let f be an isomorphism from E to F . Then f−1 is an isomorphism from
F to E.

Proposition 1.1.2 Let f be an automorphism of E (isomorphism from E to E). Then f−1 is
an automorphism of E. Let f and g be two automorphisms of E, then g ◦f is an automorphism
of E and we have (g ◦ f)−1 = f−1 ◦ g−1.

Proposition 1.1.3 If f from E to F is a linear map then :
1. ∀u ∈ E : f(−u) = −f(u).
2. f(0E) = 0F .
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1.2 Nullspace and Range

1.2.1 Nullspace

Definition 1.2.1 If f : E → F is a linear map, the nullspace of f is the set of all vectors in
E that get mapped to zero :

null(f) = {u ∈ E, f(u) = 0F} = f−1 ({0F}) .

Proposition 1.2.1 If f : E → F is a linear map, then null(f) is a subspace of E .

Proof 1.2.1 1. We have already seen that f(0E) = 0F . So 0E ∈ null(T ).
2. If u, v ∈ null(T ), then f(αu+ v) = αf(u) + f(v) = 0F + 0F = 0F . So αu+ v ∈ null(f).

Proposition 1.2.2 A linear map f : E → F is injective if and only if null(f) = {0E} .

Proof 1.2.2 Assume f is injective. We have seen that f(0E) = 0F , so 0E ∈ null(f), and
moreover if f(v) = 0F = f(0E) the injectivity of f implies v = 0E, so null(f) = {0E} .
Conversely, assume null(f) = {0E}, and suppose f(u) = f(v) for some u, v ∈ E.
Then 0 = f(u)− f(v) = f(u− v), so u− v ∈ null(f), which by assumption implies u− v = 0E,
i.e. u = v. Hence f is injective.

1.2.2 Range

Definition 1.2.2 The range of f is the set of all possible outputs of f :

range(f) = {f(u) : u ∈ E} = f(E)

Proposition 1.2.3 If f : E → F is a linear map, then range(f) is a subspace of F .

Proof 1.2.3 1. We have already seen that f(0E) = 0F , so 0F ∈ range(f).
2. If w, z ∈ range(f), there exist u, v ∈ E such that w = f(u) and z = f(v). Then

f(u+ v) = f(u) + f(v) = w + z so w + z ∈ range(f).
3. If v ∈ range(f), α ∈ K,∃u ∈ E such that v = f(u). Then

f(αu) = αf(u) = αv so αv ∈ range(f). Thus range(f) is a subspace of F .

Theoreme 1.2.1 Let f : E → F be a linear map. So :
1. f is injective ⇔ null(f) = {0E} .
2. f is surjective ⇔ range(f) = F .

Example 1.2.1 Determine the image and the nullspace of the map f from R3 to R2 defined
by :

f(x, y, z) = (x− y − z, x+ y + z), for all(x, y, z) ∈ R3.

Deduce that f is not injective and that f is surjective. We have :

null(f) =
{
(x, y, z) ∈ R3, f((x, y, z)) = (0, 0)

}
=

{
(x, y, z) ∈ R3, (x− y − z, x+ y + z) = (0, 0)

}
=

{
(x, y, z) ∈ R3, x = 0et z = −y

}
=

{
(0, y,−y) ∈ R3, y ∈ R

}
= span {(0, 1,−1)}
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null(f) 6= {(0, 0, 0)}, therefore f is not injective.

range(f) =
{
f(x, y, z) : (x, y, z) ∈ R3

}
= {(x− y − z, x+ y + z) : x, y, z ∈ R}
= {x(1, 1) + y(−1, 1) + z(−1, 1) : x, y, z ∈ R}
= span {(1, 1), (−1, 1), (−1, 1)}
= span {(1, 1), (−1, 1)}

range(f) = span {(1, 1), (−1, 1)} = R2, so f is surjective.

1.3 Linear mappings in finite dimension

Proposition 1.3.1 Let f be a linear map of E into F and B = {e1, e2, · · · , en} be a base of
E. Then the image by f of B is a generating family of range(f), that is to say

range(f) = span {f(e1), f(e2), · · · , f(en)}

Remark 1.3.1 The family {f(e1), f(e2), · · · , f(en)} is not necessarily free, so the family
{f(e1), f(e2), · · · , f(en)} is therefore not a basis of range(f)

Theoreme 1.3.1 Let f : E → F be a linear map with dim(E) = n (finite). So :

dim(E) = dim (null(f)) + dim (range(f)) .

Proposition 1.3.2 Let f : E → F be a linear map, if dim(E) = dim(F ) = n, then the
following properties are equivalent :

1. f is bijective.
2. f is injective.
3. f is surjective.

1.4 Rank of a linear map

Definition 1.4.1 Let f : E → F be a linear map. We call rank of f the dimension of range(f),
rank(f) = dim (Im(f)) = dim (f(E)).

dimE = rank(f) + nullity(f)

such that nullity(f)=dimension of its nullspace Null(f).

Remark 1.4.1 If B is a basis of E then the rank of f is the number of linearly independent
vectors in f(B), the image by f of the basis B.

Exercice 1.4.1 Let n be a natural number and let f be a linear map defined by
f(P ) = P ′, ∀P ∈ Rn [X] .

1. Show that f is an endomorphism of Rn [X] .

2. Determine the nullspace of f .
3. Deduce the dimension of range(f).
4. Check that range(f) = Rn−1 [X] .
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2 Matrices
Definition 2.0.1 A matrix is a two-dimensional array of numbers. An m−rows-by-n-columns
(abbreviated m× n ) matrix A is represented with a block of numbers :

A = (aij)m×n =


a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a1,n
... . . . . . . ...

am,1 am,2 · · · am,n


where aij is the entry in the i− th row and the j − th column of A.

Example 2.0.1 n = 2, p = 3 :

A =

(
1 2 3
0 −1 5

)
a12 = 2, a23 = 5

Definition 2.0.2 1. Two matrices are equal when they have the same size and the corres-
ponding coefficients are equal.

2. The set of n row and p column matrices with coefficients in K is denoted Mn,p(K).
The elements of Mn,p(R) are called real matrices.

2.1 Types of matrices

Different types of matrices are given below :
1. RowMatrix :AMatrix having only one row is called aRowMatrix, E.g. (a11, a12, · · · , a1p).
2. Column Matrix : A Matrix having only one Column is called a Column Matrix,E.g.

a11
a21
...
an1


3. Null Matrix : A = (aij)m×nsuch that aij = 0, ∀i and j. Then A is called a Zero Matrix

and it is denoted by 0m×n.
4. Rectangular Matrix :If A = (aij)m×n, and m 6= n then the matrix A is called a

Rectangular Matrix.
5. Square Matrix :If A = (aij)m×n, and m = n then the matrix A is called a Square

Matrix.
6. Identity Matrix or Unit matrix

In =


1 0 · · · 0
0 1 · · · 0
... . . . . . . ...
0 0 · · · 1


n is the dimension of the matrix.
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7. Lower triangular matrix,L

L =

 L11 0 0
L21 L22 0
L31 L32 L33


8. Upper triangular matrix,U

U =

 U11 U12 U13

0 U22 U23

0 0 U33


9. Diagonal matrix : A Square Matrix is said to be diagonal matrix, if aij = 0 for i 6= j

i.e. all the elements except the principal diagonal elements are zeros.
Note :

a/ Diagonal matrix is both lower and upper triangular.
b/ If d1, d2, · · · , dn are the diagonal elements in a diagonal matrix it can be represented as

diag (d1, d2, · · · , dn) . E.g. diag(3, 2,−1) =

 3 0 0
0 2 0
0 0 −1


10. A square matrix A is said to be symmetrical if : aij = aji for all i different from j

3 Operations on matrices

3.1 Transpose of a Matrix

The transpose of an m× n matrix A = (aij) is defined as the n×m matrix B = (bij), with
bij = aji for 1 ≤ i ≤ n and 1 ≤ j ≤ m. The transpose of A is denoted by AT .

Definition 3.1.1 That is, by the transpose of an m× n matrix A, we mean a matrix of order
n×m having the rows of A as its columns and the columns of A as its rows.

For example, if A =

(
3 −2 5
1 7 0

)
then AT =

 3 1
−2 7
5 0

 Thus, the transpose of a row vector

is a column vector and vice-versa.

Theoreme 3.1.1 For any matrix A, we have (AT )T = A.

3.2 Addition of Matrices

Definition 3.2.1 Let A and B be two matrices of the same size n × p. Then the sum A + B
is defined to be the matrix C = A+B of size n× p with cij = aij + bij.
In other words, we sum coefficient by coefficient.

Example 3.2.1 If

A =

(
3 −2
1 7

)
, B =

(
0 5
2 −1

)
, C =

(
−5
2

)
.
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Then
A+B =

(
3 + 0 −2 + 5 = 3

1 + 2 = 3 7− 1 = 6

)
.

A+ C is not defined.

3.3 Multiplying a Scalar to a Matrix

Let A = (aij) of Mnp(K), for a scalar α, we define αA by the matrix (αaij).

Example 3.3.1 If

A =

(
3 1 2
0 −4 −2

)
and α = −3. Then

αA = −3A =

(
−9 −3 −6
0 12 6

)
The matrix (−1)A is the opposite of A and is denoted −A. The difference A−B is defined by
A+ (−B).

Below are some basic algebraic properties of matrix addition/scalar multiplication.

Theoreme 3.3.1 Let A,B,C be matrices of the same size and let α, β be scalars. Then
(a) A+B = B + A ,
(d) α(A+B) = αA+ αB

(b) (A+B) + C = A+ (B + C),
(e) (α + β)A = αA+ βA,

(c) A+ 0 = A,
(f) α(βA) = (αβ)A

3.4 Multiplication of matrices / Product

Matrices can be multiplied only if the number of columns of the left matrix equals the
number of rows of the right matrix. In other words, an n-by-p matrix on the left can only be
multiplied by an p-by-q matrix on the right. The resulting matrix will be n-by-q.
In general, an element in the resulting product matrix, say in row i and column j, is obtained by
multiplying and summing the elements in row i of the left matrix with the elements in column
j of the right matrix.

Definition 3.4.1 Product of two matrices Let A = (aij) be a matrix n × p and B = (bij)
be a matrix p× q. Then the product C = AB is a n× q matrix whose coefficients cij are defined
by :

cij =

p∑
k=1

aikbkj
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The coefficient can be written in a more elaborate way :

cij = ai1b1j + ai2b2j + · · ·+ aikbkj + · · ·+ aipbpj.

It is convenient to arrange the calculations as follows :
b1j
×
×
×

← B

A→

 ai1× × ×




×
×

× × cij

← AB

Example 3.4.1 1.

A =

(
1 2 3
2 3 4

)
, B =

 1 2
−1 1
1 1


A is an 2− by − 3 matrix, B is an 3− by − 2 matrix, then AB is an 2− by − 2 matrix
and we have :  1 2

−1 1
1 1

← B

A→
(

1 2 3
2 3 4

)(
c11 c12
c21 c22

)
← AB

c11 = 1× 1 + 2× (−1) + 3× 1 = 2, c12 = 1× 2 + 2× 1 + 3× 1 = 7

c21 = 2× 1 + 3× (−1) + 4× 1 = 3, c22 = 2× 2 + 3× 1 + 4× 1 = 11.

Then
AB =

(
2 7
3 11

)

2. u = (a1a2 · · · an), v =


b1
b2
...
bn


uv is a matrix of size 1 × 1 whose single coefficient is a1b1 + a2b2 + · · · + anbn. This
number is called the scalar product of vectors u and v.

Remark 3.4.1 1. AB = 0 does not imply A = 0 or B = 0. Let

A =

(
0 −1
0 5

)
, B =

(
2 −3
0 0

)
Calculate AB.
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2. AB = AC does not imply B = C. Let

A =

(
0 −1
0 3

)
, B =

(
4 −1
5 4

)
, C =

(
2 5
5 4

)
Calculate AB and AC

Proposition 3.4.1 Let A,B,C ∈Mn(K), be square matrices of order n, then
1. A(BC) = (AB)C (associativity)
2. A(B + C) = AB + AC (left distributivity) ;
3. (B + C)A = BA+ CA(right-hand distributivity)
4. ∃In ∈Mn such that AI = IA = A

5. Matrix multiplication is generally not commutative.

Warning ! If A and B don’t switch, i.e. if AB 6= BA

(A+B)2 = (A+B)(A+B) = A2 +BA+ AB +B2 6= A2 + 2AB +B2

4 Row echelon form

4.1 Elementary row operations

Elementary row operations are used to transform a system of linear equations into a new
system that has the same solutions as the original one (i.e., into an equivalent system).
A system of n linear equations in m unknowns is written in matrix form as Ax = b,where A is
the n×m matrix of coefficients ; x is the m× 1 vector of unknowns and b is the n× 1 vector
of constants.
Our goal is to begin with the matrix A and apply operations that respect row equivalence until
we have a matrix in Reduced Row Echelon Form (RREF). The three elementary row operations
are :

1. (Row Swap) Exchange any two rows.
2. (Scalar Multiplication) Multiply any row by a constant.
3. (Row Sum) Add a multiple of one row to another row.

4.1.1 Row echelon form

Definition 4.1.1 A matrix A ∈Mm,n(K), of order m× n and with coefficients in a field K, is
said to be in the row echelon form if the number of zero coefficients starting each row increases
as we pass from a row Ri to a row Rj, for i < j.
The first non-zero coefficient in a row of a matrix is called pivot.

Example 4.1.1 Consider the following matrices

A =


1 0 0 0 −1 2 3
0 1 −1 0 0 0 1
−1 0 0 0 0 0 1
0 0 0 1 2 −1 0
0 0 0 0 1 2 3
0 0 0 0 0 −4 5

 , B =


1 0 0 0 −1 2 3
0 1 −1 0 0 0 1
0 0 2 −1 0 0 1
0 0 0 0 2 −1 0
0 0 0 0 1 2 3
0 0 0 0 0 −4 5
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and

C =


1 0 0 0 −1 2 3
0 1 −1 0 0 0 1
0 0 2 −1 0 0 1
0 0 0 0 1 −1 0
0 0 0 0 0 2 1
0 0 0 0 0 0 0


1. In matrix A, row R2 begins with 0, but row R3 begins with −1. So, going from row R2

to row R3, the number of zeros is not increasing. Thus, the matrix A is not in (REF).
2. In matrix B, rows R4 and R5 begin with the same number of 0, which equals to 4. So, as

we move from line R4 to line R5, the number of zeros is constant, i.e. it is not increasing.
Thus, the matrix B is not in (REF).

3. The number of zero coefficients starting the rows of matrix C is increasing, from row to
row. Thus, matrix C is in (REF).

4.1.2 Row Reduced Form of a Matrix

Definition 4.1.2 A matrix A is said to be in the row reduced form if
1. the first non-zero entry in each row of A is 1 ;
2. the column containing this 1 has all its other entries zero.

A matrix in the row reduced form is also called a row reduced matrix.

Example 4.1.2

M =


1 0 0 0 1 0 0
0 1 0 0 0 0 0
0 0 1 1 0 1 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0

 , N =


1 0 0 0 0 0 3
0 1 0 0 0 0 1
0 0 1 1 0 0 1
0 0 0 0 1 1 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


1. In the matrix M , the pivot of row 4 is m4,6 = 1, but it is not the only non-zero coefficient

in its column, since m3,6 = 1. So matrix M is not reduced.
2. The matrix N is reduced, since all the pivots are the only non-zero coefficients in their

respective columns.

Every matrix can be put in row echelon form by applying a sequence of elementary row
operations.

4.1.3 Method to get the row-reduced echelon form of a given matrix

Let A be an m × n matrix. Then the following method is used to obtain the row-reduced
echelon form of the matrix A.

1. Step 1 : Consider the first column of the matrix A. If all the entries in the first column
are zero, move to the second column.
Else, find a row, say ith row, which contains a non-zero entry in the first column. Now,
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interchange the first row with the ith row. Suppose the non-zero entry in the (1, 1)-
position is α 6= 0. Divide the whole row by α so that the (1, 1)-entry of the new matrix
is 1. Now, use the 1 to make all the entries below this 1 equal to 0.

2. Step 2 : Ignore the first row and first column. Start with the lower (m − 1) × (n − 1)
submatrix of the matrix obtained in the first step and proceed as in step 1.

3. Step 3 : Keep repeating this process till we obtain an equivalent where all the entries
below a particular row, say r, are zero.
The integer r is the largest integer such that arr 6= 0 and aij = 0 for i ≥ r + 1.
The final matrix is the row-reduced echelon form of the matrix A.

Example 4.1.3 Let

A =

 2 1 1 2
1 0 −1 −1
0 1 1 0


Let’s proceed with some elementary operations to produce matrix in the row echelon form

R2 ↔ R1 A ∼

 1 0 −1 −1
2 1 1 2
0 1 1 0


R2 − 2R1 ∼

 1 0 −1 −1
0 1 3 4
0 1 1 0


R3 −R2 ∼

 1 0 −1 −1
0 1 3 4
0 0 −2 −4


2R2, 3R3 ∼

 1 0 −1 −1
0 1 6 8
0 0 −6 −12


R3 +R2 ∼ A5 =

 1 0 −1 −1
0 1 6 8
0 0 0 −4


Note that the reduced form of a matrix in a row echelon form is obtained using the following

steps :
1. Multiply rows Ri of non-zero pivots ai by λ = 1

ai
, giving pivots all equal to 1.

2. We proceed with elementary operations on the rows, starting from the bottom of the
matrix, to eliminate the coefficients in the column of each pivot.

1. To obtain pivots equal to 1, we perform the elementary operation −1
4
R3 on A5.

A5 =

 1 0 −1 −1
0 1 6 8
0 0 0 −4

 −1
4
R3

=⇒ A6 =

 1 0 −1 −1
0 1 6 8
0 0 0 1
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2. Elimination of coefficients above the pivot in the pivot column. We then perform the
following elementary operations : R2 − 8R3 and R1 +R3.

A6 =

 1 0 −1 −1
0 1 6 8
0 0 0 1

 R2 − 8R3

=⇒
R1 +R3

A7 =

 1 0 −1 0
0 1 6 0
0 0 0 1


We then obtain the matrix A7, which is the row reduced form of the matrix A.

4.2 Rank of a Matrix

Definition 4.2.1 Row rank of a Matrix
The number of non-zero rows in the row reduced form of a matrix is called the row-rank of the
matrix.
For a matrix A,we write ‘row − rank(A)′ to denote the row-rank of A.

Example 4.2.1 Find the rank of the matrix A =

 2 3 7
3 −2 4
1 −3 −1

 by reducing it to Echelon

form.
Solution : Applying row transformations on A.

R1 ↔ R3 A ∼

 1 −3 −1
3 −2 4
2 3 7


R2 = R2 − 3R1, R3 = R3 − 2R1 A ∼

 1 −3 −1
0 7 7
0 9 9


R2 = R2/7, R3 = R3/9 ∼

 1 −3 −1
0 1 1
0 1 1


R3 = R3 −R2 ∼

 1 −3 −1
0 1 1
0 0 0


This is the Echelon form of matrix A. The rank of a matrix A=Number of non-zero rows =2.

Note
In the previous example we have A ∼ A7,Consequently, the rank of the matrix A is equal to 3.

5 The inverse of a matrix
An n× n matrix A is invertible if there is a matrix B such that AB = BA = In.

In that case, B is the inverse of A and we write A−1 = B.

Theoreme 5.0.1 Suppose A and B are invertible. Then :
1. A−1 is invertible and (A−1)−1 = A.

2. AT is invertible and (AT )−1 = (A−1)T .
3. AB is invertible and (AB)−1 = B−1A−1.

C. H. Page 12



Lecture Notes Linear Maps and Matrices

5.1 Solving systems using matrix inverse

1. To solve Ax = b, we do row reduction on [A | b].
2. To solve AX = I, we do row reduction on [A | I].
3. To compute A−1

a/ Form the augmented matrix [A | I].
b/ Compute the reduced echelon form.
c/ If A is invertible, the result is of the form [I | A−1].

Example 5.1.1 Let the system :

3x3 = 9

x1 + 5x2 − 2x3 = 2
1

3
x1 + 2x2 = 3

First we write the system as an augmented matrix :

(A | b) =

 0 0 3 | 9
1 5 −2 | 2
1
3

2 0 | 3


R1 ↔ R3 (A | b) ∼

 1
3

2 0 | 3
1 5 −2 | 2
0 0 3 | 9


3R1 ∼

 1 6 0 | 9
1 5 −2 | 2
0 0 3 | 9


R2 = R2 −R1 ∼

 1 6 0 | 9
0 −1 −2 | −7
0 0 3 | 9


−R2 ∼

 1 6 0 | 9
0 1 2 | 7
0 0 3 | 9


R1 = R1 − 6R2 ∼

 1 0 −12 | −33
0 1 2 | 7
0 0 3 | 9


1

3
R3 ∼

 1 0 −12 | −33
0 1 2 | 7
0 0 1 | 3


R1 = R1 + 12R3 ∼

 1 0 0 | 3
0 1 2 | 7
0 0 3 | 9


R2 = R2 − 2R3 ∼

 1 0 0 | 3
0 1 0 | 1
0 0 1 | 3
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Lecture Notes Linear Maps and Matrices

Now we’re in RREF and can see that the solution to the system is given by x1 = 3, x2 = 1
and x3 = 1 ; it happens to be a unique solution. Notice that we kept track of the steps we were
taking ; this is important for checking work !

Example 5.1.2 Find the inverse of

 2 0 1
0 −1 −3
−2 4 3


Solution

(A | I3) =

 2 0 1 | 1 0 0
0 −1 −3 | 0 1 0
−2 4 3 | 0 0 1


R3 = R3 +R1 (A | I3) ∼

 2 0 1 | 1 0 0
0 −1 −3 | 0 1 0
0 4 4 | 1 0 1


R3 = R3 + 4R2 ∼

 2 0 1 | 1 0 0
0 −1 −3 | 0 1 0
0 0 −8 | 1 4 1


R2 = 8R2 − 3R3 ∼

 2 0 1 | 1 0 0
0 −8 0 | −3 −4 −3
0 0 −8 | 1 4 1


R1 = 8R1 +R3 ∼

 16 0 8 | 9 4 1
0 −8 0 | −3 −4 −3
0 0 −8 | 1 4 1


R1 =

1

16
8R1, R2 =

−1
8
R2, R3 =

−1
8
R3 ∼

 1 0 8 | 9/16 1/4 1/16
0 1 0 | 3/8 1/2 3/8
0 0 1 | −1/8 −1/2 −1/8


The inverse is the right side.  9/16 1/4 1/16

3/8 1/2 3/8
−1/8 −1/2 −1/8
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