Course : Algebra 3
Chapter 1: Determinants of matrices

Year : 2023/2024
Department of Computer Science

Solutions

Solution 0.1 .

1)
1. A is a symmetric matrix if $a=5$ and $b=6$.
2. A is an upper triangular matrix if $a=b=0$.
2) C is a diagonal matrix if a, e and i are not equal to 0 such that $b=c=f=d=g=h=0$.
3) $B^{T}=\left(\begin{array}{lll}3 & 0 & 4 \\ 4 & 2 & 1 \\ 1 & 3 & 0\end{array}\right)$.
4) $|B|=3\left|\begin{array}{ll}2 & 3 \\ 1 & 0\end{array}\right|-4\left|\begin{array}{ll}0 & 3 \\ 4 & 0\end{array}\right|+1\left|\begin{array}{ll}0 & 2 \\ 4 & 1\end{array}\right|=31 \neq 0$ yes, it is possible to determine B^{-1}

Solution 0.2 .

$$
|A|=5\left|\begin{array}{rr}
3 & 4 \\
5 & 2
\end{array}\right|-6\left|\begin{array}{ll}
2 & 4 \\
1 & 2
\end{array}\right|+7\left|\begin{array}{cc}
2 & 3 \\
1 & 5
\end{array}\right|=-21 \neq 0 . \text { We deduce that } A^{-1} \text { exists. }
$$

Solution 0.3 .

$$
\begin{aligned}
|A| & =\alpha\left|\begin{array}{cc}
2 & \alpha \\
1 & 1
\end{array}\right|-1\left|\begin{array}{cc}
0 & \alpha \\
(\alpha-2) & 1
\end{array}\right|+2\left|\begin{array}{cc}
0 & 2 \\
(\alpha-2) & 1
\end{array}\right| \\
& =-4(\alpha-2)
\end{aligned}
$$

This leads to $|A|=0 \Longrightarrow \alpha=2$
Solution 0.4 .
1)

$$
\left(\begin{array}{lll}
2 & 1 & 3 \\
4 & 5 & 7 \\
0 & 1 & 8
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
3 \\
0 \\
2
\end{array}\right)
$$

$$
\begin{aligned}
& |A|=46 . \\
& x=\frac{\left|\begin{array}{lll}
3 & 1 & 3 \\
0 & 5 & 7 \\
2 & 1 & 8
\end{array}\right|}{46}=\frac{83}{46}, y=\frac{\left|\begin{array}{lll}
2 & 3 & 3 \\
4 & 0 & 7 \\
0 & 2 & 8
\end{array}\right|}{46}=\frac{-100}{46}=\frac{-50}{23}, z=\frac{\left|\begin{array}{ccc}
2 & 1 & 3 \\
4 & 5 & 0 \\
0 & 1 & 2
\end{array}\right|}{46}=\frac{24}{46} .
\end{aligned}
$$

2)

$$
\left(\begin{array}{lll}
3 & 2 & 9 \\
8 & 0 & 1 \\
7 & 5 & 4
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
4 \\
2 \\
1
\end{array}\right)
$$

$$
\begin{aligned}
& |A|=295 . \\
& x=\frac{\left|\begin{array}{lll}
4 & 2 & 9 \\
2 & 0 & 1 \\
1 & 5 & 4
\end{array}\right|}{295}=\frac{56}{295}, y=\frac{\left|\begin{array}{lll}
3 & 4 & 9 \\
8 & 2 & 1 \\
7 & 1 & 4
\end{array}\right|}{295}=\frac{-133}{295}, z=\frac{\left|\begin{array}{lll}
3 & 2 & 4 \\
8 & 0 & 2 \\
7 & 5 & 1
\end{array}\right|}{295}=\frac{142}{295} .
\end{aligned}
$$

Solution 0.5 .
1)

$$
\left(\begin{array}{ll}
5 & 1 \\
3 & 4
\end{array}\right)\binom{x}{y}=\binom{5}{6} .
$$

$|A|=17$.
$A^{-1}=\frac{1}{17}\left(\begin{array}{cc}4 & -1 \\ -3 & 5\end{array}\right)$.
$X=A^{-1} B=\frac{1}{17}\left(\begin{array}{cc}4 & -1 \\ -3 & 5\end{array}\right)\binom{5}{6}=\binom{\frac{14}{17}}{\frac{15}{17}}$.
2)

$$
\left(\begin{array}{lll}
1 & 2 & 4 \\
7 & 5 & 3 \\
9 & 7 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
1 \\
3 \\
4
\end{array}\right) .
$$

$|A|=40$.
$A^{-1}=\frac{1}{40}\left(\begin{array}{ccc}-16 & 26 & -14 \\ 20 & -35 & 25 \\ 4 & 11 & -9\end{array}\right)$.
$X=A^{-1} B=\left(\begin{array}{c}\frac{6}{40} \\ \frac{15}{40} \\ \frac{1}{40}\end{array}\right)$.
Solution 0.6 .

1) We have $A^{2}=A$ and $B=A-I$. This leads to

$$
\begin{aligned}
B^{2} & =(A-I)^{2} \\
& =A^{2}-2 A+I \\
& =A-2 A+I \\
& =-A+I \\
& =-(A-I) \\
& =-B
\end{aligned}
$$

2) We have $A^{2}=I$ and $B=3(A+I)$. This leads to

$$
\begin{aligned}
B^{2} & =(3(A+I))^{2} \\
& =9\left(A^{2}+2 A+I\right) \\
& =9(2 I+2 A) \\
& =6(3(I+A)) \\
& =6 B
\end{aligned}
$$

Solution 0.7 .

1) Take that

$$
\begin{aligned}
\left(A^{-1}\right)^{T} A^{T} & =\left(A A^{-1}\right)^{T} \\
& =(I)^{T} \\
& =I
\end{aligned}
$$

and that

$$
\begin{aligned}
A^{T}\left(A^{-1}\right)^{T} & =\left(A^{-1} A\right)^{T} \\
& =(I)^{T} \\
& =I
\end{aligned}
$$

Thus, we find

$$
\left(A^{-1}\right)^{T} A^{T}=I, \text { and } A^{T}\left(A^{-1}\right)^{T}=I
$$

In the sequel, we deduce

$$
\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}
$$

2).
a) From the property of the determinant of the product of two matrices, we have

$$
|A B|=|A||B|
$$

. We know that $|A| \neq 0$ and $|B| \neq 0$. This leads to

$$
|A B| \neq 0
$$

b) We have $|A B| \neq 0$, then $A B$ is invertible. Here, we take that

$$
\begin{aligned}
\left(B^{-1} A^{-1}\right)(A B) & =B^{-1}\left(A^{-1} A\right) B \\
& =B^{-1} I B \\
& =B^{-1} B \\
& =I
\end{aligned}
$$

and that

$$
\begin{aligned}
(A B)\left(B^{-1} A^{-1}\right) & =A\left(B B^{-1}\right) A^{-1} \\
& =A(I) A^{-1} \\
& =A A^{-1} \\
& =I
\end{aligned}
$$

Thus, we obtain

$$
\left(B^{-1} A^{-1}\right)(A B)=I, \text { and }(A B)\left(B^{-1} A^{-1}\right)=I
$$

Then, we deduce that

$$
(A B)^{-1}=B^{-1} A^{-1}
$$

