Course : Algebra 3
Chapter 3 : Endomorphisms

Year : 2023/2024
Department of Computer Science

Solutions

Solution 0.1 .

1) The matrix D is similar to A, then

$$
D=P^{-1} A P
$$

such that P is a square matrix and is nonsingular. This leads to

$$
\begin{aligned}
\operatorname{det} D & =\operatorname{det}\left(P^{-1} A P\right) \\
& =\operatorname{det}\left(P^{-1}\right)(\operatorname{det} A)(\operatorname{det} P) \\
& =\frac{1}{\operatorname{det} P}(\operatorname{det} A)(\operatorname{det} P) \\
& =\operatorname{det} A
\end{aligned}
$$

2) We have that X is an eigenvector of A

$$
A X=\lambda X
$$

Then, we find

$$
P A P^{-1} X=\lambda X
$$

This yields

$$
D\left(P^{-1}\right) X=\lambda\left(P^{-1} X\right)
$$

If we take that

$$
Z=P^{-1} X
$$

we get

$$
D Z=\lambda Z
$$

Finally, we deduce that $Z=P^{-1} X$ is an eigenvector of D.
Solution 0.2 . We have that A and D are similar, then

$$
D=P^{-1} A P
$$

which leads to

$$
\begin{aligned}
\operatorname{det}(D-\lambda I) & =\operatorname{det}\left(P^{-1}(A-\lambda I) P\right) \\
& =\operatorname{det}\left(P^{-1}\right) \operatorname{det}(A-\lambda I) \operatorname{det} P \\
& =\frac{1}{\operatorname{det} P} \operatorname{det}(A-\lambda I) \operatorname{det} P \\
& =\operatorname{det}(A-\lambda I)
\end{aligned}
$$

Solution 0.3 .

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\operatorname{det}(A-\lambda I)^{T} \\
& =\operatorname{det}\left(A^{T}-\lambda I^{T}\right) \\
& =\operatorname{det}\left(A^{T}-\lambda I\right)
\end{aligned}
$$

Solution 0.4 .

1) The characteristic polynomial of A is given by

$$
\begin{aligned}
p(\lambda) & =\operatorname{det}(A-\lambda I) \\
& =\left|\begin{array}{cc}
4-\lambda & 1 \\
9 & 4-\lambda
\end{array}\right| \\
& =(4-\lambda)^{2}-9 \\
& =\lambda^{2}-8 \lambda+7
\end{aligned}
$$

2) We take

$$
p(\lambda)=\lambda^{2}-8 \lambda+7=(\lambda-1)(\lambda-7)=0
$$

then, the eigenvalues of A are $\lambda_{1}=1$ and $\lambda_{2}=7$.
The eigenvectors of A are given by
If $\lambda_{1}=1$, then we get

$$
\left(A-\lambda_{1} I\right) X_{1}=\left(\begin{array}{ll}
3 & 1 \\
9 & 3
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0}
$$

This yields

$$
\begin{array}{r}
3 x_{1}+x_{2}=0 \\
9 x_{1}+3 x_{2}=0
\end{array}
$$

Here, we have $x_{2}=-3 x_{1}$. Then, the eigenvector corresponding to λ_{1} is given by

$$
X_{1}=\binom{1}{-3}
$$

If $\lambda_{2}=7$, then we get

$$
\left(A-\lambda_{2} I\right) X_{2}=\left(\begin{array}{cc}
-3 & 1 \\
9 & -3
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0}
$$

This yields

$$
\begin{array}{r}
-3 x_{1}+x_{2}=0 \\
9 x_{1}-3 x_{2}=0
\end{array}
$$

Here, we have $x_{2}=3 x_{1}$. Then, the eigenvector corresponding to λ_{2} is given by

$$
X_{2}=\binom{1}{3}
$$

3) Yes, the matrix A is diagonalizable.
4) The matrix P is

$$
P=\left(\begin{array}{cc}
1 & 1 \\
-3 & 3
\end{array}\right)
$$

and

$$
P^{-1}=\frac{1}{6}\left(\begin{array}{cc}
3 & -1 \\
3 & 1
\end{array}\right)
$$

such that

$$
D=\left(\begin{array}{ll}
1 & 0 \\
0 & 7
\end{array}\right)
$$

Finally, we obtain

$$
P^{-1} A P=\left(\begin{array}{cc}
\frac{1}{2} & -\frac{1}{6} \\
\frac{1}{2} & \frac{1}{6}
\end{array}\right)\left(\begin{array}{cc}
4 & 1 \\
9 & 4
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
-3 & 3
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 7
\end{array}\right)
$$

Solution 0.5 .

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\left|\begin{array}{ccc}
1-\lambda & 2 & -3 \\
1 & 1-\lambda & 2 \\
1 & 0 & 3-\lambda
\end{array}\right| \\
& =(1-\lambda)(\lambda-2)^{2}
\end{aligned}
$$

Then, the eigenvalues of A are $\lambda_{1}=1$ and $\lambda_{2}=\lambda_{3}=2$. Now, we need to find the eigenvectors of A.
If $\lambda_{1}=1$, we get

$$
\left(A-\lambda_{1} I\right) X_{1}=\left(\begin{array}{ccc}
0 & 2 & -3 \\
1 & 0 & 2 \\
1 & 0 & 2
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

Here, we have $x_{1}=-2 x_{3}, x_{2}=\frac{3}{2} x_{3}$. Then

$$
X_{1}=\left(\begin{array}{c}
-2 \\
3 \\
2 \\
1
\end{array}\right)
$$

If $\lambda_{2}=\lambda_{3}=2$, we get

$$
\left(A-\lambda_{2} I\right) X_{2}=\left(\begin{array}{ccc}
-1 & 2 & -3 \\
1 & -1 & 2 \\
1 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

Here, we have $x_{1}=-x_{3}$ and $x_{2}=x_{3}$. Then,

$$
X_{2}=\left(\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right)
$$

Finally, we deduce that A is not diagonalizable.

Solution 0.6 .

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\left|\begin{array}{ccc}
-1-\lambda & 1 & 1 \\
0 & 3-\lambda & 4 \\
-9 & 4 & -3-\lambda
\end{array}\right| \\
& =(1+\lambda)(4-\lambda)(4+\lambda)
\end{aligned}
$$

Then, the eigenvalues of A are $\lambda_{1}=-1, \lambda_{2}=4$ and $\lambda_{3}=-4$. Now, we need to find the eigenvectors of A.
If $\lambda_{1}=-1$, we get

$$
\left(A-\lambda_{1} I\right) X_{1}=\left(\begin{array}{ccc}
0 & 1 & 1 \\
0 & 4 & 4 \\
-9 & 4 & -2
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

Here, we have $x_{2}=-x_{3}$ and $x_{1}=\frac{-2}{3} x_{3}$. Then

$$
X_{1}=\left(\begin{array}{c}
\frac{-2}{3} \\
-1 \\
1
\end{array}\right)
$$

If $\lambda_{2}=4$, we get

$$
\left(A-\lambda_{2} I\right) X_{2}=\left(\begin{array}{ccc}
-5 & 1 & 1 \\
0 & -1 & 4 \\
-9 & 4 & -7
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

Here, we have $x_{2}=4 x_{3}$ and $x_{1}=x_{3}$. Then,

$$
X_{2}=\left(\begin{array}{l}
1 \\
4 \\
1
\end{array}\right)
$$

If $\lambda_{3}=-4$, we get

$$
\left(A-\lambda_{3} I\right) X_{3}=\left(\begin{array}{ccc}
3 & 1 & 1 \\
0 & 7 & 4 \\
-9 & 4 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

Here, we have $x_{2}=-\frac{4}{7} x_{3}$ and $x_{1}=-\frac{1}{7} x_{3}$. Then,

$$
X_{3}=\left(\begin{array}{c}
-\frac{1}{7} \\
-\frac{4}{7} \\
1
\end{array}\right)
$$

Then, the matrix P is

$$
P=\left(\begin{array}{ccc}
-\frac{2}{3} & 1 & -\frac{1}{7} \\
-1 & 4 & -\frac{4}{7} \\
1 & 1 & 1
\end{array}\right)
$$

and

$$
P^{-1}=-\frac{21}{40}\left(\begin{array}{ccc}
\frac{32}{7} & -\frac{8}{7} & 0 \\
\frac{3}{7} & -\frac{11}{21} & -\frac{5}{21} \\
-5 & \frac{5}{3} & -\frac{5}{3}
\end{array}\right)
$$

Finally, we obtain

$$
P^{-1} A P=\left(\begin{array}{ccc}
-\frac{672}{280} & \frac{168}{280} & 0 \\
-\frac{63}{280} & \frac{11}{40} & \frac{5}{40} \\
\frac{105}{40} & -\frac{105}{120} & \frac{105}{120}
\end{array}\right)\left(\begin{array}{ccc}
-1 & 1 & 1 \\
0 & 3 & 4 \\
-9 & 4 & -3
\end{array}\right)\left(\begin{array}{ccc}
-\frac{2}{3} & 1 & -\frac{1}{7} \\
-1 & 4 & -\frac{4}{7} \\
1 & 1 & 1
\end{array}\right)=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & -4
\end{array}\right)
$$

Solution 0.7 .

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\left|\begin{array}{ccc}
1-\lambda & 3 & 1 \\
0 & 4-\lambda & 2 \\
26 & 24 & 6-\lambda
\end{array}\right| \\
& =(\lambda+2)(\lambda+1)(14-\lambda)
\end{aligned}
$$

Then, the eigenvalues of A are $\lambda_{1}=-2, \lambda_{2}=-1$ and $\lambda_{3}=14$. Now, we need to find the eigenvectors of A. If $\lambda_{1}=-2$, we get

$$
\left(A-\lambda_{1} I\right) X_{1}=\left(\begin{array}{ccc}
3 & 3 & 1 \\
0 & 6 & 2 \\
26 & 24 & 8
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

Here, we have $x_{3}=-3 x_{2}$ and $x_{1}=0$. Then

$$
X_{1}=\left(\begin{array}{c}
0 \\
1 \\
-3
\end{array}\right)
$$

If $\lambda_{2}=-1$, we get

$$
\left(A-\lambda_{2} I\right) X_{2}=\left(\begin{array}{ccc}
2 & 3 & 1 \\
0 & 5 & 2 \\
26 & 24 & 7
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

Here, we have $x_{3}=-\frac{5}{2} x_{2}$ and $x_{1}=-\frac{1}{4} x_{2}$. Then,

$$
X_{2}=\left(\begin{array}{c}
-\frac{1}{4} \\
1 \\
-\frac{5}{2}
\end{array}\right)
$$

If $\lambda_{3}=14$, we get

$$
\left(A-\lambda_{3} I\right) X_{3}=\left(\begin{array}{ccc}
-13 & 3 & 1 \\
0 & -10 & 2 \\
26 & 24 & -8
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

Here, we have $x_{3}=5 x_{2}$ and $x_{1}=\frac{8}{13} x_{2}$. Then,

$$
X_{3}=\left(\begin{array}{c}
\frac{8}{13} \\
1 \\
5
\end{array}\right)
$$

Then, the matrix P is

$$
P=\left(\begin{array}{ccc}
0 & -\frac{1}{4} & \frac{8}{13} \\
1 & 1 & 1 \\
-3 & -\frac{5}{2} & 5
\end{array}\right)
$$

and

$$
D=\left(\begin{array}{ccc}
-2 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 14
\end{array}\right)
$$

Here, we have

$$
Y^{\prime}=D Y
$$

Then

$$
Y=\left(\begin{array}{c}
C_{1} \exp (-2 t) \\
C_{2} \exp (-t) \\
C_{3} \exp (14 t)
\end{array}\right)
$$

Finally, the solution is

$$
X=P Y=\left(\begin{array}{ccc}
0 & -\frac{1}{4} & \frac{8}{13} \\
1 & 1 & 1 \\
-3 & -\frac{5}{2} & 5
\end{array}\right)\left(\begin{array}{c}
C_{1} \exp (-2 t) \\
C_{2} \exp (-t) \\
C_{3} \exp (14 t)
\end{array}\right)
$$

Then

$$
X=\left(\begin{array}{c}
-\frac{1}{4} C_{2} \exp (-t)+\frac{8}{13} C_{3} \exp (14 t) \\
C_{1} \exp (-2 t)+C_{2} \exp (-t)+C_{3} \exp (14 t) \\
-3 C_{1} \exp (-2 t)-\frac{5}{2} C_{2} \exp (-t)+5 C_{3} \exp (14 t)
\end{array}\right)
$$

