Solution TD No. 4
(bivariate statistics)

Exercise 1

1. Calculation of Covariance The covariance $\operatorname{Cov}(X, Y)$ is calculated using the formula:

$$
\operatorname{Cov}(X, Y)=\frac{1}{n} \sum\left(x_{i} y_{i}\right)-\bar{X} \bar{Y}
$$

Given the data, we compute:

$$
\operatorname{Cov}(X, Y)=412.8-7 \times 65.2=-43.6
$$

where:

$$
\bar{Y}=\frac{1}{n} \sum y_{i}=65.2, \quad \bar{X}=\frac{1}{n} \sum x_{i}=7
$$

Thus, the covariance $\operatorname{Cov}(X, Y)$ is -43.6 .
2. Regression Line Equation The equation of the regression line $Y=a X+b$ is determined where:

$$
a=\frac{\operatorname{Cov}(X, Y)}{\operatorname{Var}(X)}, \quad b=\bar{Y}-a \bar{X}
$$

From the calculations:

$$
\begin{aligned}
& \operatorname{Var}(X)=\frac{1}{n} \sum x_{i}^{2}-\bar{X}^{2}=61.8-49=12.8 \\
& a=\frac{-43.6}{12.8}=-3.4, \quad b=65.2+3.4 \times 7=89
\end{aligned}
$$

Thus, the regression line is:

$$
Y=-3.4 X+89
$$

3. Correlation Coefficient The linear correlation coefficient r is computed as:

$$
r=\frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \sigma_{Y}}
$$

Where:

$$
\begin{gathered}
\operatorname{Var}(Y)=\frac{1}{n} \sum y_{i}^{2}-\bar{Y}^{2}=150.16 \\
\sigma_{Y}=\sqrt{150.16}=12.25
\end{gathered}
$$

Given σ_{X} and σ_{Y}, calculate $r . r=\frac{-46.6}{\sqrt{12,8} \times 12,25}=--0.99$
4. the coefficient of determination $R=r^{2}=0,98$

Exercise 2: We have this table:

	y_{j}	6	8	10	13	\sum
x_{i}	$\mathbf{X} \mid \mathbf{Y}$	$[5-7[$	$[7-9[$	$[9-11[$	$[11-15[$	$n_{i .}$
2	$[1-3[$	0	0	2	36	38
7	$[3-11[$	0	3	12	26	41
15	$[11-19[$	1	8	35	16	60
25	$[19-31[$	10	26	22	3	61
75	$[31-59[$	22	15	6	0	43
\sum	$n_{. j}$	33	52	77	81	243

Determination of Covariance and Linear Coefficient

To determine the covariance $\operatorname{Cov}(X, Y)$ between two variables X and Y, we use the formula:

$$
\begin{aligned}
& \operatorname{Cov}(X, Y)=\frac{1}{N} \sum_{i=1}^{5} \sum_{j=1}^{4}\left(x_{i}-\bar{X}\right)\left(y_{j}-\bar{Y}\right) \\
& \operatorname{Cov}(X, Y)=\frac{1}{N} \sum_{i=1}^{5} \sum_{j=1}^{4} n_{i j} x_{i} y_{j}-\bar{X} \bar{Y}
\end{aligned}
$$

where \bar{X} and \bar{Y} are the means of X and Y respectively.
Calculate the mean values:

$$
\begin{gathered}
\bar{X}=\frac{1}{N} \sum_{i=1}^{5} n_{i} x_{i} \\
\bar{X}=\frac{1}{243}((38 \times 2)+(7 \times 41)+(15 \times 60)+(25 \times 61)+(45 \times 43)) \\
\bar{X}=19.43 \\
\bar{Y}=\frac{1}{243}((33 \times 6)+(52 \times 8)+(77 \times 10)+(81 \times 13)) \\
\bar{Y}=10.02
\end{gathered}
$$

The covariance calculation is shown below:

$$
\begin{aligned}
\operatorname{Cov}(X, Y)= & \frac{1}{N} \sum_{i=1}^{n} n_{i j} x_{i} y_{j}-\bar{X} \bar{Y} \\
= & \frac{1}{243}((2 \times 10 \times 2)+(36 \times 13 \times 2)+(3 \times 8 \times 7)+(12 \times 10 \times 7) \\
& +(26 \times 13 \times 7)+(1 \times 6 \times 15)+(8 \times 8 \times 15)+(35 \times 10 \times 15) \\
& +(16 \times 13 \times 15)+(6 \times 10 \times 25)+(26 \times 8 \times 25)+(22 \times 10 \times 25) \\
& +(3 \times 13 \times 25)+(22 \times 6 \times 45)+(15 \times 8 \times 45)+(6 \times 10 \times 45)) \\
& -(10.02 \times 19.43) \\
& \operatorname{Cov}(X, Y)=-26.03
\end{aligned}
$$

Calculation of the Linear Correlation Coefficient

Calculate the linear correlation coefficient r, which is defined as:

$$
r=\frac{\operatorname{cov}(x, y)}{\sigma_{x} \sigma_{y}}
$$

where σ_{x} and σ_{y} are the standard deviations of x and y respectively, calculated from their variances.

The variance for x is given by:

$$
\operatorname{Var}(x)=\frac{1}{N} \sum_{i=1}^{5} n_{i} x_{i}^{2}-\bar{X}^{2}=202,14
$$

$$
\sigma_{X}=\sqrt{202,14}=14.21
$$

And the variance for y is:

$$
\begin{gathered}
\operatorname{Var}(y)=\frac{1}{N} \sum_{j=1}^{4} n_{j} y_{j}^{2}-\bar{Y}^{2}=6.02 \\
\sigma_{y}=\sqrt{6.02}=2.49
\end{gathered}
$$

Thus, the correlation coefficient r can be calculated using:

$$
\begin{gathered}
r=\frac{\operatorname{cov}(x, y)}{\sqrt{\operatorname{Var}(x) \operatorname{Var}(y)}}= \\
r=\frac{-26,03}{14,21 \times 2.49}=-0.74
\end{gathered}
$$

and the coefficient of determination $R=r^{2}=0,55$
3. the regression line of \mathbf{Y} on X

$$
\begin{gathered}
a=\frac{\operatorname{Cov}(X, Y)}{\operatorname{Var}(X)}, \quad b=\bar{Y}-a \bar{X} \\
a=\frac{-29,03}{202.14}=-0,13 \\
b=10.02+0.13 \times 19,43=12,55
\end{gathered}
$$

So

$$
Y=-0.13 X+12.55
$$

4. Estimate the sleep duration for a person aged 66 years So

$$
Y=-0.13 \times 66+12.55=3,97 h o u r s
$$

