Algebra standard correction 1

Exercise 1 1. Paris is in France or Madrid is in China. (T)
2. Open the door. Is not a proposition
3. The moon is a satelite of the earth. (T) Satellites are objects that revolve around other larger objects in space. Earth and the moon are called "natural" satellites.
4. $x+5=7$. Is NOT a proposition; as its truth value Unknown.
5. $x+5>9$ for every real number x. (F)

Exercise 2 Determine whether each of the following implications is true or false.

1. If 0.5 is an integer, then $1+0.5=3$. ($T) \quad(F \Rightarrow F)$
2. If $5>2$ then cats can fly. $(F) \quad(T \Rightarrow F)$.
3. If $3 \times 5=15$ then $1+2=3$.(T)
4. For any real $x \in \mathbb{R}$, if $x \leq 0$ then $(x-1)<0$. (T)

Exercise 3 The statements $P \Rightarrow(Q \vee R)$ and $(P \Rightarrow Q) \vee(P \Rightarrow R)$. are logically equivalent, use the truth table. After simplification:

1. $P \wedge Q$.
2. $(P \wedge Q) \vee(Q \vee \bar{R})$.
3. This is necessarly false, so it is equivalent to $P \wedge \bar{P}$.

Exercise 4 Consider the statement "for all integers a and b, if $a+b$ is even, then a and b are even"

1. The contrapositive of the statement : For all integers a and b, if a or b is not even, then $a+b$ is not even.
2. The converse of the statement : For all integers a and b, if a and b are even, then $a+b$ is even.
3. The negation of the statement :There are numbers a and b such that $a+b$ is even but a and b are not both even.
4. The original statement is false, For example, $a=3$ and $b=5 . a+b=8$, but neither a nor b are even.
5. The contrapositive of the original statement is false, since it is equivalent to the original statement.
6. The converse of the original statement is true. Let a and b be integers. Assume both are even. Then $a=2 k$ and $b=2 j$ for some integers k and j. But then $a+b=2 k+2 j=2(k+j)$ which is even.
7. The negation of the original statement is true since the statement is false.

Exercise 5 1. $(P \wedge Q) \wedge \overline{(P \vee Q)}$ Contradiction.
2. $((P \vee Q) \wedge \bar{P}) \Rightarrow Q$ Tautology.
3. $(P \Rightarrow Q) \Leftrightarrow(\bar{P} \Rightarrow Q)$ Contingency.
4. $((P \Rightarrow Q) \wedge(Q \Rightarrow R)) \Rightarrow(P \Rightarrow R)$ Tautology.

Exercise 6 1. $\forall x \in \mathbb{R}, \quad(x+1)^{2}=x^{2}+2 x+1$.
2. $\exists x \in \mathbb{R}, \quad x^{2}+3 x+2=0$.
3. $\exists!x \in \mathbb{R} / \quad 2 x+1=0$
4. $\exists x \in \mathbb{N} / \quad x \leq \pi$
5. $\cdots x \in \mathbb{R}: \quad x^{2}+2 x+3=0$
6. $\cdots x \in \emptyset: 2=3$.

Exercise 7 1. The function $x \mapsto x^{3}-x$ is not positive for all $x \in \mathbb{R}^{+}$, only for $x \geq 1$.
The negation : $\exists x=\frac{1}{2} \in \mathbb{R}^{+} / \frac{1}{2^{3}}<\frac{1}{2}$.
2. $\forall x \in \mathbb{R}, \exists y=-x+1 \in \mathbb{R}: x+y>0 \cdots(T)$.
3. $\exists x \in \mathbb{R}: \forall y \in \mathbb{R}, x+y>0 \cdots(F)$.

The negation : $\forall x \in \mathbb{R}, \exists y=-x-1 \in \mathbb{R}: x+y \leq 0$.
4. $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, x+y>0 \cdots(F)$.

The negation : $\exists x=1, \exists y=-2 / \quad x+y \leq 0 \cdots(T)$.
5. $\exists x=-1 \in \mathbb{R}: \forall y \in \mathbb{R}, \quad y^{2}>x \cdots(T)$.
6. (F). The negation : $\exists x=2 \in \mathbb{R}: \exists y=3 \in \mathbb{R}: 2+3 \leq 2 \times 3$.
7. (F). $8=|x-z|=|x-y+y-z| \leq|x-y|+|y-z|=3+4=7$.

The negation $: \forall(x, y, z) \in \mathbb{R}^{3},|x-y| \neq 3 \vee|y-z| \neq 4$ or $|x-z| \neq 8$.
Exercise 8 Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ a function. Give the negation of :

1. $\exists M>0 / \forall A>0, \exists x \geq A / \quad f(x) \leq M$.
2. $\exists x \in \mathbb{R} / \quad, f(x)>0 \wedge x>0$.
3. $\exists \epsilon>0 / \forall \eta>0, \exists(x, y) \in I^{2} / \quad(|x-y| \leq \eta \wedge|f(x)-f(y)|>\epsilon)$.

Exercise $9 \quad$ 1. f is constant: $\exists C \in \mathbb{R} / \quad \forall x \in \mathbb{R}, \quad f(x)=C$.
2. f is not constant $: \exists x \in \mathbb{R}, \exists y \in \mathbb{R} / \quad f(x) \neq f(y)$.
3. f is increasing : $\forall(x, y) \in \mathbb{R}^{2}:(x \leq y \Rightarrow f(x) \leq f(y))$.
4. f is bounded $: \exists M \in \mathbb{R}, \exists m \in \mathbb{R} / \quad \forall x \in \mathbb{R}, \quad m \leq f(x) \leq M$.

Exercise 10 3. Rewrite the contrapositive as: If n is odd, then n^{2} is odd.
Since n is odd (hypothesis), we can let $n=2 k+1$ for some integer k, Then we are going to square it as the conclusion suggests, and show that it is odd.

$$
(2 k+1)^{2}=4 k^{2}+4 k+1=2\left(2 k^{2}+2 k\right)+1
$$

$2 k^{2}+2 k$ is also an integer. Then the square of an odd number is also an odd number.
4. Let us assume on the contrary that $\sqrt{2}$ is a rational number. Then, there exist two integers p and q such that

$$
\begin{equation*}
\sqrt{2}=\frac{p}{q}, \quad q \neq 0 \tag{1}
\end{equation*}
$$

where we may assume that p and q, are co-prime i.e. have no common factors (if there are any common factors we cancel them in the numerator and denominator). Squaring (1)on both sides gives

$$
2=\frac{p^{2}}{q^{2}} \quad \text { i.e. } \quad p^{2}=2 q^{2} .
$$

Thus p^{2} is even, then p is even (see 3.), $p=2 k, k \in \mathbb{Z}$, so $2=\frac{(2 k)^{2}}{q^{2}}$, i.e. $2 q^{2}=2 \times 2 k^{2}$, this means that $q^{2}=2 k^{2}, q^{2}$ is even, then q has to be even, so p and q both even. We obtain that 2 is a common factor of p and q. But, this contradicts the fact that p and q have no common factor other than 1. This means that our supposition is wrong.
Hence, $\sqrt{2}$ is an irrational number.
4. Let us show by induction on the integer $n \in \mathbb{N}^{*}$, that the property $P(n): \quad 2^{n-1} \leq n!\leq n^{n}$ is true : Base case : For $n=1$, we have $2^{0} \leq 1!\leq 1$. Thus, $P(n)$ is true for $n=1$.
Inductive Step : Assume that $P(n)$ is true and show that $P(n+1)$ is true, which amounts to assuming that $2^{n-1} \leq n!\leq n^{n}$ and to show that $2^{n} \leq(n+1)!\leq(n+1)^{n+1}$.
For $n \geq 1$, we have $n+1 \geq 2 \Rightarrow 2^{n}=2 \times 2^{n-1} \leq(n+1) n!=(n+1)$!.
So $2^{n} \leq(n+1)!\cdots(i)$.
Also, we have $n \leq n+1$, so $n^{n} \leq(n+1)^{n}$,
and

$$
(n+1)!=(n+1) \times n!\leq(n+1) \times n^{n} \leq(n+1) \times(n+1)^{n}=(n+1)^{n+1} .
$$

i.e. $(n+1)!\leq(n+1)^{n+1} \cdots(i i)$
(i) and (ii) shows that $2^{n} \leq(n+1)$! $\leq(n+1)^{n+1}$ and so $P(n) \Rightarrow P(n+1)$.

In conclusion, by induction on the integer $n \in \mathbb{N}^{*}$, we have $2^{n-1} \leq n!\leq n^{n}$.

