Algebra standard correction 2. First part.

Exercise 1

$$
\overline{A \cup B}=\bar{A} \cap \bar{B}
$$

We prove that

1. $\overline{A \cup B} \subset \bar{A} \cap \bar{B}$ and
2. $\bar{A} \cap \bar{B} \subset \overline{A \cup B}$
3. $\overline{A \cup B} \subset \bar{A} \cap \bar{B} \Leftrightarrow \forall x \in E, x \in \overline{A \cup B} \Rightarrow x \in \bar{A} \cap \bar{B}$.

Let $x \in \overline{A \cup B} \Leftrightarrow x \in E$ and $x \notin A \cup B$, then $x \in E$ and $(x \notin A \wedge x \notin B$) which implies that $(x \in E \wedge x \notin A)$ and $(x \in E \wedge x \notin B)$ i.e. $x \in \bar{A} \cap \bar{B}$.
2. $\bar{A} \cap \bar{B} \subset \overline{A \cup B} \Leftrightarrow \forall x \in E, x \in \bar{A} \cap \bar{B} \Rightarrow x \in \overline{A \cup B}$.

Let $x \in \bar{A} \cap \bar{B} \Leftrightarrow(x \in E \wedge x \notin A)$ and $(x \in E \wedge x \notin B)$ i.e $x \in E \wedge(x \notin A \wedge x \notin B)$ which implies that $x \in E$ and $x \notin A \cup B$. i.e. $x \in \overline{A \cup B}$

Exercise 2 Let E be a non-empty set. By contraposition we Prove that:

1. $\forall A, B \in P(E): A \neq B \Rightarrow A \cup B \neq A \cap B$.

We have : $A \neq B \Leftrightarrow \exists x \in E / x \in A \wedge x \notin B($ or $x \in B \wedge x \notin A)$.
We have $x \in A \subset A \cup B$ so $x \in A \cup B$ and $x \notin B \Rightarrow x \notin A \cap B$ which implies that $A \cup B \neq A \cap B$.
2. By contraposition we Prove that:
$\forall A, B, C \in P(E): B \neq C \Rightarrow(A \cap B \neq A \cap C \quad$ and $\quad A \cup B \neq A \cup C)$.
We have $B \neq C \Leftrightarrow \exists x \in E / \quad x \in B \wedge x \notin C$. Two cases are then possible :
$a / x \in A$.
We have $x \in A \wedge x \in B \Rightarrow x \in A \cap B$ and $x \notin C \Rightarrow x \notin A \cap C$, so we conclude that $A \cap B \neq A \cap C$. b/ $x \notin A$.

We have $x \notin A \wedge x \notin C \Rightarrow x \notin A \cup C$ and $x \in B \Rightarrow x \in A \cup B$, so we conclude that $A \cup B \neq A \cup C$.

Exercise 3 Symmetric difference

Let A and B be two parts of a set E. We call the symmetric difference of A and B, and we denote $A \Delta B$, the set defined by :

$$
A \Delta B=(A \cup B) \backslash(A \cap B)
$$

1. Show that $A \Delta B=(A \backslash A \cap B) \cup(B \backslash A \cap B)$. Let's proceed by double inclusion.

Let us show that $A \Delta B \subseteq(A \backslash A \cap B) \cup(B \backslash A \cap B)$. Let $x \in A \Delta B$. By definition, $x \in A \cup B$, therefore $x \in A$ or $x \in B$. Suppose first that $x \in A$, the other case being symmetrical. By definition of the symmetric difference $x \notin A \cap B$, we therefore have $x \in A \backslash A \cap B$. By symmetry, if $x \in B$, we will have $x \in B \backslash A \cap B$.
Conclusion : We have shown that for all $x \in A \Delta B$, we have $x \in(A \backslash A \cap B)$ or $x \in(B \backslash A \cap B)$ i.e $A \Delta B \subseteq(A \backslash A \cap B) \cup(B \backslash A \cap B)$.

Let us show that $(A \backslash A \cap B) \cup(B \backslash A \cap B \subseteq A \Delta B)$. The proof is similar.
2. $A \Delta E=E \backslash A=\bar{A}$.
$A \Delta A=\emptyset$ and $A \Delta \emptyset=A$.
3. Suppose $A \Delta B=A \cap B$. Prove by contradiction that : $A=\emptyset,(B=\emptyset)$.

Suppose $A \Delta B=A \cap B$. To show that $A=B=\emptyset$, we just need to show that $A=\emptyset$, because A and B play symmetrical roles. Let us therefore show that $A=\emptyset$.
Suppose absurdly that there exists $a \in A$. Two cases are then possible :
a/ 1 st case $: a \in B$.
We have $a \in A \cap B=A \Delta B$. However, by definition of the difference symmetric, $a \notin A \cap B, a$ contradiction.
a/ 2nd case : $a \notin B$.
We then have that $a \notin A \cap B$. Since $a \in A$, we have that $a \in A \cup B$, and therefore $a \in A \Delta B$. Now, $A \Delta B=A \cap B$, therefore $a \in A \cap B$, therefore $a \in B$, a contradiction.
Conclusion : All cases lead to a contradiction, which means that there is no $a \in A$, and therefore $A=\emptyset$.
4. Let $C \in P(E)$. Show that $A \Delta B=A \Delta C$ if and only if $B=C$.

If $B=C$, then it is clear that $A \Delta B=A \Delta C$.
Now suppose $A \Delta B=A \Delta C$, and show that $B=C$. Again, we will proceed by double inclusion. Let us show that $B \subseteq C$. Let $b \in B$. There are several possibilities :
$a /$ If $b \in A$, then it is in $A \cap B$, and therefore cannot be in $A \Delta B$. As $A \Delta B=A \Delta C$ by hypothesis, $b \notin A \Delta C$. Since $b \in A$, it must be in $A \cap C$, and $b \in C$.
$b /$ If $b \notin A$, then it is in $A \cup B \backslash A \cap B=A \Delta B=A \Delta C$. So $b \in A \cup C$, but $b \notin A$, therefore $b \in C$. In all cases, $b \in C$. This being true for all $b \in B$, we indeed have $B \subseteq C$.
Let us show that $C \subseteq B$. The statement is symmetric in B and C, and $B \subseteq C$.
Conclusion : $B=C$.

