Algebra standard correction 2. First part.

Exercise 1

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

We prove that

- 1. $\overline{A \cup B} \subset \overline{A} \cap \overline{B}$ and
- 2. $\overline{A} \cap \overline{B} \subset \overline{A \cup B}$
- 1. $\overline{A \cup B} \subset \overline{A} \cap \overline{B} \Leftrightarrow \forall x \in E, x \in \overline{A \cup B} \Rightarrow x \in \overline{A} \cap \overline{B}.$ Let $x \in \overline{A \cup B} \Leftrightarrow x \in E$ and $x \notin A \cup B$, then $x \in E$ and $(x \notin A \land x \notin B)$ which implies that $(x \in E \land x \notin A)$ and $(x \in E \land x \notin B)$ i.e. $x \in \overline{A} \cap \overline{B}.$
- 2. $\overline{A} \cap \overline{B} \subset \overline{A \cup B} \Leftrightarrow \forall x \in E, x \in \overline{A} \cap \overline{B} \Rightarrow x \in \overline{A \cup B}.$ Let $x \in \overline{A} \cap \overline{B} \Leftrightarrow (x \in E \land x \notin A)$ and $(x \in E \land x \notin B)$ i.e $x \in E \land (x \notin A \land x \notin B)$ which implies that $x \in E$ and $x \notin A \cup B$. i.e. $x \in \overline{A \cup B}$

Exercise 2 Let E be a non-empty set. By contraposition we Prove that :

- $\begin{array}{l} 1. \ \forall A, B \in P(E) : A \neq B \Rightarrow A \cup B \neq A \cap B.\\ We \ have \ : A \neq B \Leftrightarrow \exists x \in E/x \in A \wedge x \notin B \ (or \ x \in B \wedge x \notin A).\\ We \ have \ x \in A \subset A \cup B \ so \ x \in A \cup B \ and \ x \notin B \Rightarrow x \notin A \cap B \ which \ implies \ that \ A \cup B \neq A \cap B. \end{array}$
- 2. By contraposition we Prove that : $\forall A, B, C \in P(E) : B \neq C \Rightarrow (A \cap B \neq A \cap C \text{ and } A \cup B \neq A \cup C).$ We have $B \neq C \Leftrightarrow \exists x \in E/ x \in B \land x \notin C$. Two cases are then possible :
- $\begin{array}{l} a / \ x \in A. \\ We \ have \ x \in A \wedge x \in B \Rightarrow x \in A \cap B \ and \ x \notin C \Rightarrow x \notin A \cap C, \ so \ we \ conclude \ that \ A \cap B \neq A \cap C. \end{array}$
- $b/x \notin A.$ We have $x \notin A \land x \notin C \Rightarrow x \notin A \cup C$ and $x \in B \Rightarrow x \in A \cup B$, so we conclude that $A \cup B \neq A \cup C$.

Exercise 3 Symmetric difference

Let A and B be two parts of a set E. We call the symmetric difference of A and B, and we denote $A\Delta B$, the set defined by :

$$A\Delta B = (A \cup B) \setminus (A \cap B).$$

1. Show that $A \Delta B = (A \setminus A \cap B) \cup (B \setminus A \cap B)$. Let's proceed by double inclusion.

Let us show that $A\Delta B \subseteq (A \setminus A \cap B) \cup (B \setminus A \cap B)$. Let $x \in A\Delta B$. By definition, $x \in A \cup B$, therefore $x \in A$ or $x \in B$. Suppose first that $x \in A$, the other case being symmetrical. By definition of the symmetric difference $x \notin A \cap B$, we therefore have $x \in A \setminus A \cap B$. By symmetry, if $x \in B$, we will have $x \in B \setminus A \cap B$.

Conclusion : We have shown that for all $x \in A\Delta B$, we have $x \in (A \setminus A \cap B)$ or $x \in (B \setminus A \cap B)$ i.e $A\Delta B \subseteq (A \setminus A \cap B) \cup (B \setminus A \cap B)$.

Let us show that $(A \setminus A \cap B) \cup (B \setminus A \cap B \subseteq A \Delta B)$. The proof is similar.

- 2. $A\Delta E = E \setminus A = \overline{A}$. $A\Delta A = \emptyset \text{ and } A\Delta \emptyset = A$.
- 3. Suppose A∆B = A ∩ B. Prove by contradiction that : A = Ø, (B = Ø).
 Suppose A∆B = A ∩ B. To show that A = B = Ø, we just need to show that A = Ø, because A and B play symmetrical roles. Let us therefore show that A = Ø.
 Suppose absurdly that there exists a ∈ A. Two cases are then possible :
- a/ 1st case : $a \in B$. We have $a \in A \cap B = A\Delta B$. However, by definition of the difference symmetric, $a \notin A \cap B$, a contradiction.

- $a/2nd\ case : a \notin B.$ We then have that $a \notin A \cap B$. Since $a \in A$, we have that $a \in A \cup B$, and therefore $a \in A\Delta B$. Now, $A\Delta B = A \cap B$, therefore $a \in A \cap B$, therefore $a \in B$, a contradiction. **Conclusion :** All cases lead to a contradiction, which means that there is no $a \in A$, and therefore $A = \emptyset$.
- 4. Let $C \in P(E)$. Show that $A\Delta B = A\Delta C$ if and only if B = C. If B = C, then it is clear that $A\Delta B = A\Delta C$. Now suppose $A\Delta B = A\Delta C$, and show that B = C. Again, we will proceed by double inclusion. Let us show that $B \subseteq C$. Let $b \in B$. There are several possibilities :
- a/ If $b \in A$, then it is in $A \cap B$, and therefore cannot be in $A\Delta B$. As $A\Delta B = A\Delta C$ by hypothesis, $b \notin A\Delta C$. Since $b \in A$, it must be in $A \cap C$, and $b \in C$.
- b/ If $b \notin A$, then it is in $A \cup B \setminus A \cap B = A\Delta B = A\Delta C$. So $b \in A \cup C$, but $b \notin A$, therefore $b \in C$. In all cases, $b \in C$. This being true for all $b \in B$, we indeed have $B \subseteq C$. Let us show that $C \subseteq B$. The statement is symmetric in B and C, and $B \subseteq C$. **Conclusion :** B = C.