University year : 2023-2024 Department :MI <u>Module</u> : Algebra 2

Tutorial Series(2)

Exercise 1 Let F_1, F_2 be two subsets of \mathbb{R}^3 defined as :

 $F_1 = \{ (x, y, z) \in \mathbb{R}^3 : x = y = z \}$ $F_2 = \{ (x, y, z) \in \mathbb{R}^3 : x + 2y = 3z \}$

(1)- Show that F_1, F_2 are two vector sub-spaces of \mathbb{R}^3 . (2)- Find the basis of F_1 , F_2 and give their dimensions $(\dim F_1, \dim F_2)$. (3)- Is $\mathbb{R}^3 = F_1 \oplus F_2$?

Exercise 2 Determine which of the following maps are linear.

$$\begin{split} f: \mathbb{R}^2 &\to \mathbb{R}^3, (x, y) \longmapsto (x+y, x-2y, 0); \\ f: \mathbb{R}^2 &\to \mathbb{R}^3, (x, y) \longmapsto (x+y, x-2y, 1); \\ f: \mathbb{R}^2 &\to \mathbb{R}^2, (x, y) \longmapsto (x-y, 2x+y); \\ f: \mathbb{R}^2 &\to \mathbb{R}, \ (x, y) \longmapsto x^2 - y^2; \end{split}$$

Exercise 3 Let $f \in \mathcal{L}(\mathbb{R}^3, \mathbb{R}^2)$ be defined by :

$$f(x, y, z) = (x + y + 2z, x - y)$$

- (1)- Show that f is a linear application (linear map)
- (2)- Determine kerf and Imf.
- (3)- Determine the basis of kerf and Imf and deduce their dimensions dimkerf, dimImf. What can we conclude?

Exercise 4 Let $f \in \mathcal{L}(\mathbb{R}^2, \mathbb{R}^3)$ be defined by :

$$f(x_1, x_2) = (x_1 + x_2, x_2, x_1)$$

- (1)- Show that f is a linear application (linear map)
- (2)- Determine Rank(f). What can we conclude?

Exercise 5 We consider $B = \{e_1 = (1, 0, 0), e_2 = (0, 1, 0), e_3 = (0, 0, 1)\}$ the canonical base of \mathbb{R}^3 - Determine the expression of $f \in \mathcal{L}(\mathbb{R}^3, \mathbb{R}^4)$ such that :

$$f(e_1) = (1, 2, -1, 2), f(e_2) = (2, 4, 4, -8), f(e_3) = (3, 6, 1, -2)$$