Tutorial Series(2)

Exercise 1 Let F_{1}, F_{2} be two subsets of \mathbb{R}^{3} defined as:

$$
\begin{gathered}
F_{1}=\left\{(x, y, z) \in \mathbb{R}^{3}: x=y=z\right\} \\
F_{2}=\left\{(x, y, z) \in \mathbb{R}^{3}: x+2 y=3 z\right\}
\end{gathered}
$$

(1)- Show that F_{1}, F_{2} are two vector sub-spaces of \mathbb{R}^{3}.
(2)- Find the basis of F_{1}, F_{2} and give their dimensions ($\left.\operatorname{dim} F_{1}, \operatorname{dim} F_{2}\right)$.
(3)- $I s \mathbb{R}^{3}=F_{1} \oplus F_{2}$?

Exercise 2 Determine which of the following maps are linear.

$$
\begin{aligned}
& f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3},(x, y) \longmapsto(x+y, x-2 y, 0) ; \\
& f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3},(x, y) \longmapsto(x+y, x-2 y, 1) ; \\
& f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2},(x, y) \longmapsto(x-y, 2 x+y) ; \\
& f: \mathbb{R}^{2} \rightarrow \mathbb{R},(x, y) \longmapsto x^{2}-y^{2} ;
\end{aligned}
$$

Exercise 3 Let $f \in \mathcal{L}\left(\mathbb{R}^{3}, \mathbb{R}^{2}\right)$ be defined by :

$$
f(x, y, z)=(x+y+2 z, x-y)
$$

(1)- Show that f is a linear application (linear map)
(2)- Determine kerf and Imf.
(3)- Determine the basis of kerf and Imf and deduce their dimensions dimkerf, dimImf. What can we conclude?

Exercise 4 Let $f \in \mathcal{L}\left(\mathbb{R}^{2}, \mathbb{R}^{3}\right)$ be defined by :

$$
f\left(x_{1}, x_{2}\right)=\left(x_{1}+x_{2}, x_{2}, x_{1}\right)
$$

(1)- Show that f is a linear application (linear map)
(2)- Determine Rank(f). What can we conclude?

Exercise 5 We consider $B=\left\{e_{1}=(1,0,0), e_{2}=(0,1,0), e_{3}=(0,0,1)\right\}$ the canonical base of \mathbb{R}^{3} - Determine the expression of $f \in \mathcal{L}\left(\mathbb{R}^{3}, \mathbb{R}^{4}\right)$ such that :

$$
f\left(e_{1}\right)=(1,2,-1,2), f\left(e_{2}\right)=(2,4,4,-8), f\left(e_{3}\right)=(3,6,1,-2)
$$

