Course : Algebra 3

Chapter 3 : Endomorphisms

Year : 2023/2024
Batna 2 University
Department of Computer Science

Tutorial series 3

Exercise 0.1 Let D be similar to A where A and D are square matrices. Show that 1. $\operatorname{det} D=\operatorname{det} A$.
2. In the case where $P^{-1} X$ represents an eigenvector of D, X represents an eigenvector of A.

Exercise 0.2 Let A and D be similar such that A and D are square matrices. Prove that

$$
\operatorname{det}(D-\lambda I)=\operatorname{det}(A-\lambda I)
$$

Exercise 0.3 Let A be a square matrix. Prove that

$$
\operatorname{det}(A-\lambda I)=\operatorname{det}\left(A^{T}-\lambda I\right)
$$

Exercise 0.4 Let A be a matrix

$$
A=\left(\begin{array}{ll}
4 & 1 \\
9 & 4
\end{array}\right)
$$

1. Find the characteristic polynomial of A.
2. Determine the eigenvalues and eigenvectors of A.
3. Is the matrix A diagonalizable.
4. In the case where A is diagonalizable, diagonalize it.

Exercise 0.5 Let A be a matrix where

$$
A=\left(\begin{array}{ccc}
1 & 2 & -3 \\
1 & 1 & 2 \\
1 & 0 & 3
\end{array}\right)
$$

Is the matrix A diagonalizable.
Exercise 0.6 Let A be a square matrix defined by

$$
A=\left(\begin{array}{ccc}
-1 & 1 & 1 \\
0 & 3 & 4 \\
-9 & 4 & -3
\end{array}\right)
$$

Diagonalize A.
Exercise 0.7 Let $X^{\prime}=A X$ be a system of differential equations where

$$
A=\left(\begin{array}{ccc}
1 & 3 & 1 \\
0 & 4 & 2 \\
26 & 24 & 6
\end{array}\right)
$$

Solve the given system.

