Course : Algebra 3

Chapter 4 : Vector spaces

Year : 2023/2024
Batna 2 University
Department of Computer Science

Tutorial series 4

Exercise 0.1 Let $<,>: \mathbb{R}^{n} \times \mathbb{R}^{n} \longrightarrow \mathbb{R}$ be a function satisfying, for $x, y \in \mathbb{R}^{n}$,

$$
\begin{equation*}
<x, y>=\sum_{i=1}^{n} x_{i} y_{i} \tag{1}
\end{equation*}
$$

Prove that $<x, y>$ is an inner product on \mathbb{R}^{n}.
Exercise 0.2 Consider, for $w \in C[a, b]$,

$$
<f, g>=\int_{a}^{b} w(t) f(t) g(t) d t
$$

such that w is a fixed positive function. Prove that $<f, g>$ is an inner product on $C[a, b]$.
Exercise 0.3 Consider

$$
\begin{equation*}
<f, g>=\int_{0}^{\pi} f(t) g(t) d t \tag{2}
\end{equation*}
$$

Prove that $f(t)$ and $g(t)$ are orthogonal with respect to (2) in $C[0, \pi]$ such that $f(t)=\cos (t)$ and $g(t)=\sin (t)$.
Exercise 0.4 Let

$$
\begin{equation*}
<p, q>=\int_{-1}^{1} p(x) q(x) d x \tag{3}
\end{equation*}
$$

be an inner product on the vector space of polynomials of degree 2 or less, denoted by P_{2}. Find an orthogonal basis for P_{2}.

Exercise 0.5 Prove that

$$
\begin{equation*}
\left\{\frac{1}{\sqrt{2}}\left(v_{1}-v_{2}\right), \frac{1}{\sqrt{2}}\left(v_{1}+v_{2}\right)\right\} \tag{4}
\end{equation*}
$$

is an orthonormal set where $\left\{v_{1}, v_{2}\right\}$ is an orthonormal set in an inner product space.
Exercise 0.6 Let $x, y \in V$. Prove that

1. $|<x, y>| \preccurlyeq\|x\|\|y\|$, (The Cauchy-Schwarz inequality).
2. $\|x+y\| \preccurlyeq\|x\|+\|y\|$, (The triangle inequality).
