Course : Algebra 3 Chapter 4 : Vector spaces Year : 2023/2024 Batna 2 University Department of Computer Science

Tutorial series 4

Exercise 0.1 Let $<,>: \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}$ be a function satisfying, for $x, y \in \mathbb{R}^n$,

$$\langle x, y \rangle = \sum_{i=1}^{n} x_i y_i. \tag{1}$$

Prove that $\langle x, y \rangle$ is an inner product on \mathbb{R}^n .

Exercise 0.2 Consider, for $w \in C[a, b]$,

$$\langle f,g \rangle = \int_{a}^{b} w(t)f(t)g(t)dt,$$

such that w is a fixed positive function. Prove that $\langle f, g \rangle$ is an inner product on C[a, b].

Exercise 0.3 Consider

$$\langle f,g \rangle = \int_0^\pi f(t)g(t)dt.$$
⁽²⁾

Prove that f(t) and g(t) are orthogonal with respect to (2) in $C[0,\pi]$ such that $f(t) = \cos(t)$ and $g(t) = \sin(t)$.

Exercise 0.4 Let

$$\langle p,q \rangle = \int_{-1}^{1} p(x)q(x)dx,$$
 (3)

be an inner product on the vector space of polynomials of degree 2 or less, denoted by P_2 . Find an orthogonal basis for P_2 .

Exercise 0.5 Prove that

$$\{\frac{1}{\sqrt{2}}(v_1 - v_2), \frac{1}{\sqrt{2}}(v_1 + v_2)\},\tag{4}$$

is an orthonormal set where $\{v_1, v_2\}$ is an orthonormal set in an inner product space.

Exercise 0.6 Let $x, y \in V$. Prove that

1. $|\langle x, y \rangle| \preccurlyeq ||x|| ||y||$, (The Cauchy-Schwarz inequality).

2. $||x + y|| \leq ||x|| + ||y||$, (The triangle inequality).