
Chapter 1

Vector spaces

In this chapter k represents a field

1.1 Vector space

Definition 1.1. A vector space over k is a non-empty set E endowed with two laws:

• an internal composition law called addition and denoted ” + ”

+ : E × E −→ E

(x, y) 7−→ x + y

• an external composition law called multiplication by a scalar and denoted by ” · ”

· : k × E −→ E

(λ, x) 7−→ λ · x

such that:

1. (E, +) is a commutative group, where the neutral element is denoted by 0E and the

symmetric of an element x of E will be denoted −x;

2. The external law must satisfy for all x ∈ E and α, β ∈ k :

α · (β · x) = (αβ) · x;
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3. for all x, y ∈ E and α, β ∈ k :

(α + β) · x = α · x + β · x;

4. for all x, y ∈ E and α, β ∈ k :

α · (x + y) = (α · x) + (α · y);

5. 1k · x = x.

Elementary property:

Let E be a k -vector space, then we have the following properties:

• ∀x ∈ E, 0 · x = 0E

• ∀α ∈ k, α · 0 = 0E

• α · x = 0E ⇔ α = 0k or x = 0E;

Example 1.1. (R, +, .) is a R-vector space and (C, +, .) is a C-vector space.

Example 1.2. We consider kn the set of ordered sequences of n elements of k, i.e., (x1, x2, ..., xn)

with n being a positive integer. Let x = (x1, x2, ..., xn) and x′ = (x′
1, x′

2, ..., x′
n) two elements of

kn and let α ∈ k , we set:

x + x′ = (x1 + x′
1, x2 + x′

2, ..., xn + x′
n) and α.x = (α.x1, α.x2, ..., α.xn). Equipped with these two

laws, it is easy to verify that kn is a k -vector space.

Example 1.3. The set V = F (R,R) of functions from R to R equipped with the laws usual

ways of adding functions, and multiplying a function by a scalar: (f + g)(x) = f(x) + g(x) and

(α.f)(x) = α.f(x), is a k - vector space.
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1.1.1 Vector subspace

In this part, E will denote a k-vector space.

Definition 1.2. A subset F of E is called a vector subspace on k of E if

(i) ∅ ≠ F ⊂ E,

(ii) F is a k-vector space.

There is another technique to show that a subset F of E is vector subspace.

Theorem 1.1. A subset F of E is called a vector subspace on k of E if the following

condition hold :

(i) 0E ∈ F ;

(ii) ∀x, y ∈ F, x + y ∈ F ;

(ii) ∀α ∈ k, ∀x ∈ F, α.x ∈ F.

Theorem 1.2. Let F be a nonempty subset of E, the following assertions are equivalence :

• F is a vector subspace over k,

• F is stable for addition and for multiplication by a scalar .i.e

∀x, y ∈ F, x + y ∈ F ; and ∀α ∈ k, ∀x ∈ F, α.x ∈ F .

• ∀x, y ∈ F, ∀α, β ∈ k; α.x + β.y ∈ F.

Example 1.4. (1). E and 0E are vector sub-spaces of E .

(2). F = {(x, y) ∈ R2/x + y = 0} is a vector subspace of R2 over R because ,

• 0E = 0R2 = (0, 0) ∈ F ⇒ F ̸= ∅

• ∀(x, y), (x′, y′) ∈ F, ∀α, β ∈ R : α(x, y) + β(x′, y′) ∈ F i.e (αx + βx′, αy + βy′) ∈ F

we have

(x, y) ∈ F ⇒ x + y = 0 and (x′, y′) ∈ F ⇒ x′ + y′ = 0
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αx + βx′ + αy + βy′ = α(x + y) + β(x′ + y′) = α(0) + β(0) = 0

Then α(x, y) + β(x′, y′) ∈ F , so F is vector subspace of E.

3. The set F = {(x, y) ∈ R2/x − y + 1 = 0} is not a vector subspace of R2 because the zero

vector 0R2 does not belong to F.

1.1.2 Intersection and union of vector sub-spaces

Proposition 1.1. The intersection of two vector sub-spaces is a vector subspace.

Proof. Consider F1 and F2 two vector sub-spaces of E. First 0E ∈ F1 , because F1 is a vector

subspace of E. Similarly, 0E ∈ F2. Thus, 0E ∈ F1 ∩ F2 and F1 ∩ F2 is therefore not empty.

Given x, y ∈ F1 ∩ F2 and α, β ∈ k, we then have αx + βy ∈ F1 since F1 is a vector subspace

of E. Similarly, αx + βy ∈ F2. Thus, αx + βy ∈ F1 ∩ F2. It follows that F1 ∩ F2 is a vector

subspace of E.

Lemma 1.1. The intersection ∩n
i=1Fi of vector subspaces of a vector space E is a vector sub-

space of E.

Remark 1.1. In general, the union of two vector sub-spaces is not a vector subspace.

Indeed, if we consider E = R2 and the two vector sub-spaces

D1 = {(x, y) ∈ R2|y = 0} and D2 = {(x, y) ∈ R2|x = 0}.

Then D1 ∪ D2 is not a vector subspace of E. For example, (1
2 , 0) + (0, 1

2) = (1
2 , 1

2) is the sum of

an element of D1 and an element of D2, but is not in D1 ∪ D2.

1.2 Generating families, Free families, Basis

• Linear combination

Definition 1.3. For n ∈ N∗, A linear combination of vectors u1, u2, ..., un of a k-vector space

E, is a vector which can be written V = ∑n
i=1 λiui. The elements λ1, λ2, ..., λn ∈ k are called

coefficients of the linear combination.
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Example 1.5. In R3, the vector U = (3, 3, 1) is a linear combination of vectors (1, 1, 0) and

(1, 1, 1) because U = (3, 3, 1) = 2(1, 1, 0) + (1, 1, 1)

Remark 1.2. • If F is a vector subspace of E, and u1, u2, ..., un ∈ F, then any linear

combination ∑n
i=1 λiui is in F .

• Let u1, u2, ..., un, n vectors of a k-vector space E. One can always write 0E as a linear

combination of these vectors, because it suffices to take all zero coefficients of the linear

combination.

• If n = 1, then V = λ1u1 we say that V is colinear with u1.

• In R2, the vector u = (2, 1) is not colinear with v = (1, 1).

Notation

Given the vectors u1, u2, ..., un of k-vector space E, we denote V ect(u1, u2, ..., un) or ⟨u1, u2, ..., un⟩the

set of linear combination of u1, u2, ..., un . So we write :

⟨u1, u2, ..., un⟩ = V ect(u1, u2, ..., un) = {u ∈ E | ∃λ1, λ2, ..., λn ∈ kn; u = ∑n
i=1 λiui}

• Generating families

We consider a nonempty family A = (u1, u2, ..., un) of vectors of a k -vector space E with

n ∈ N∗.

Definition 1.4. We say that A generates E, or that it is generator of E if and only if

V ect(u1, u2, ..., un) = E. In other words, any vector of E is a linear combination of the elements

of A.

Example 1.6. • A = {u1 = (1, 0, 0), u2 = (0, 1, 0), u3 = (0, 0, 1)}generates R3, because

for all U = (x, y, z) ∈ R3 we have: (x, y, z) = x(1, 0, 0) + y(0, 1, 0) + z(0, 0, 1)

• Let u1 = (1, 1, 1), u2 = (1, 2, 3) two vectors of R3

We have:

(x, y, z) ∈ V ect(u1, u2) = ⟨u1, u2⟩ ⇔ (x, y, z) = λ1(1, 1, 1) + λ2(1, 2, 3) ⇔ x =

λ1 + λ2, y = λ1 + 2λ2, z = λ1 + 3λ2
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Then {u1, u2} generates R3

• Free families

Definition 1.5. We say that A is free if and only if the null vector 0E is a linear combination

of elements of A unique way. In other words:

∀λ1, λ2, ...., λn ∈ k,
∑n

i=1 λiui = 0E ⇒ λ1 = λ2 = .....λi = 0E.

Example 1.7. The set A = {u1 = (1, 0, 1), u2 = (0, 2, 2), u3 = (3, 7, 1)} is free

Let λ1, λ2, λ3 ∈ R, we have∑n
i=1 λiui = λ1(1, 0, 1) + λ20, 2, 2) + λ3(3, 7, 1) = 0R3 ⇒ λ1 = λ2 = λ3 = 0

Remark 1.3. We can use the following expressions:

• If A is free then we also say that the vectors (u1, u2, ..., un) are linearly independent.

• If A is not free, we say that A is linked.

• A family of a single vector is free if and only if this vector is non-zero.

• Basis

Definition 1.6. We say that A is a basis of a vector space E if it is free and generating.

In other words, every vector of E is a linear combination of the elements of A in a unique way.

So we have:

∀u ∈ E, ∃!(λ1, λ2, ..., λn) ∈ kn u = ∑n
i=1 λiui

where λ1, λ2, ..., λn are called the coordinates of the vector u in this basis A.

1.3 Dimension of Vector spaces

finite type

Definition 1.7. A vector space is said to be of finite type if it admits a finite generating

family. In other words: if a vector space is generated by a finite family of vectors, it is said to

be of finite type .
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Theorem 1.3. In a finite dimensional vector space E, all basis have the same number of

elements. This number denoted dim(E) is called the dimension of E.

Theorem 1.4. Let A be a family of elements of E of finite dimension n. The following prop-

erties are equivalent:

(i) A is a basis of E.

(ii) A is free and generates E.

(iii) A is free and cardinal(A) = n.

(v) A is the generator of E and cardinal(A) = n.

Example 1.8. The set A = {u1 = (1, 2), u2 = (2, −1)}generates R2. What can we conclude?

To show that A is a generating family, we look for two real λ1, λ2 such that: for allu =

(x, y)inR2

U = λ1u1 + λ2u2. After the calculation we will have λ1 = 1
5(x + 2y), λ2 = 1

5(x − 2y) Which

means that A generates R2. On the other hand, it is clear that A is free, of cardinal 2, so A is

a basis of R2.

- We deduce that in a vector space E, any free family (or generator) whose number of

elements is equal to the dimension of E is a basis.

Theorem 1.5. Let F be a vector subspace of E − k vector space, we have

• dim(F ) ≤ dim(E)

• dim(F ) = dim(E) ⇔ E = F

Corollary 1.1. (1)- Every vector space of finite type admits a finite basis, and all its bases

have the same cardinality.

In a vector space of dimension n, we have:

(2)- Any free family has at most n elements.

(3)- Any generating family has at least n elements
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1.3.1 Rank of finite family of vectors

Definition 1.8. Let E be a k-vector space and G = {v1, v2, ..., vm} a family of m vectors of

E. The rank of the family G noted rank(G) is the dimension of the vector subspace F =

V ect(v1, v2, ..., vm) generated by the vectors v1, v2, ..., vm i.e, rank(G) = dim(F ). or the largest

number of linearly indepent vectors.

Properties : Let E be a k-vector space and G = {v1, v2, ..., vm} a family of vectors of E .

So we have:

1 0 ≤ rank(G) ≤ m.

2 If dim(E) = n (finite), then rank(G) ≤ n.

3 rank(G) = m if and only if G is free.

4 rank(G) = 0 if and only if all vectors of G are zero.

Example 1.9. Let G = {v1 = (2, 3), v2 = (4, 2), v3 = (−3, 4)} be a family of the vector space

R2. Determine the rank of G.

It is clear that v2 and v3 are linearly independent. On the other hand, by solving the linear

system α1v1 + α2v2 + α3v3 = 0, we get 2v1 − v2 − v3 = 0. The family G is therefore dependent.

We deduce that V ect(v1, v2, v3) = V ect(v1, v2). So rank(G) = 2.

1.4 Complementary vector subspace

1.4.1 • Sum of two vector sub-spaces

Definition 1.9. Let F1 and F2 be two vector sub-spaces of a k-vector space E. We call sum

of F1 and F2 the set noted F1 + F2 , vectors which are the sum of a vector of F1 and a vector

of F2:

F1 + F2 = {u : u = u1 + u2, u1 ∈ F1, u2 ∈ F2}.
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Remark 1.4. We can characterize the vectors u of the sum F1 + F2, by:

u ∈ F1 + F2 ⇔ ∃(u1, u2) ∈ F1 × F2, u = u1 + u2

Proposition 1.2. Let F1 and F2 be two vector sub-spaces of a k-vector space E.

(1)- F1 + F2 is a vector subspace of E.

(2)- F1 + F2 is the smallest vector subspace of E containing both F1 and F2.

Proof. (1) Consider F1 and F2 be two vector sub-spaces of E. First 0E ∈ F1 because F1 is a

vector subspace of E. Similarly, 0E ∈ F2 Thus, 0E = 0E + 0E ∈ F1 + F2 and F1 + F2 is

therefore not empty. Let x, y ∈ F1 +F2 and α, β ∈ k. Since x ∈ F1 +F2, there are x1 ∈ F1

and x2 ∈ F2 such that : x = x1 + x2 soαx = α(x1 + x2) = α(x1) + α(x2) ∈ F1 + F2,

because α(x1) ∈ F1 and α(x2) ∈ F2. Similarly for y ∈ F1 + F2, weget βy = β(y1 + y2) =

β(y1) + β(y2) ∈ F1 + F2, because β(y1) ∈ F1 and β(y2) ∈ F2 with y = y1 + y2.

It follows that αx + βy = (αx1 + βy1) + (αx2 + βy2) ∈ F1 + F2.

(2 ) We first show that the set F1 +F2 contains both F1 and F2. Indeed, any element u1 ∈ F1

is written u1 = u1 + 0E with u1 belonging to F1 and 0E belonging to F2, because F2 is a

vector subspace of E. u1 belongs to F1 + F2. The same for an element of F2.

Now we show that if H is a vector subspace containing F1 and F2, thenF1 + F2 ⊂ H. As

F1 ⊂ H. we therefore have, if u1 ∈ F1 then in particular u1 ∈ H. Similarly, if u2 ∈ F2

then u2 ∈ H.. Since H is a vector subspace, then F1 + F2 ⊂ H.

Example 1.10. Determine F + G where F and G be two vector sub-spaces of R3

F = {(x, y, z) ∈ R3 : y = z = 0} and G = {(x, y, z) ∈ R3 : x = z = 0}

any element w of F + G is written w = u + v where u an element of F and v an element of G.

For all u ∈ F there exist x ∈ R such that u = (x, 0, 0) and for all v ∈ G, there exist y ∈ R such

that v = (0, y, 0), so w = u + v = (x, y, 0) is the sum of (x, 0, 0) and (0, y, 0).

Conversely, all element w = (x, y, 0) = (x, 0, 0) + (0, y, 0) is a sum of an element of F and an

element of G. Then F + G = {(x, y, z) ∈ R3 : z = 0}
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Proposition 1.3. 4 (Grassmann formula). Let E be k− vector space of finite dimension , F1

and F2 be two vector sub-spaces of E, then :

dimE = dimF1 + dimF2 − dim(F1 ∩ F2)

For the existence of additional sub-spaces in finite dimension, the incomplete basis theorem

says that in a finite dimensional vector space, any free family can be completed into a basis of

the space. We immediately deduce the existence of supplementary ones.

1.4.2 • Direct sum of two vector sub-spaces

Proposition 1.4. Let F1 and F2 be two vector sub-spaces of E. We say that the sum F1 + F2

is direct if any vector of F1 + F2 decomposes uniquely as the sum of an element of F1 and

an element of F2

E = F1 ⊕ F2 then ∀w ∈ E, ∃! u ∈ F1 ∃! v ∈ F2 such that : w = u + v

Notation When F1 and F2 are in direct sum, we write F1 + F2 = F1 ⊕ F2.

Definition 1.10. Let F1 and F2 be two vector sub-spaces of E. We say that the sum F1 + F2

is direct (E = F1 ⊕ F2) if and only if

• F1 ∩ F2 = 0E

• E = F1 + F2

Corollary 1.2. Let E be k− vector space of finite dimension, then the following conditions are

equivalent.

(1) E = F1 ⊕ F2

(2) F1 ∩ F2 = 0E and dimE = dimF1 + dimF2

(3) E = F1 + F2 and dimE = dimF1 + dimF2
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Remark 1.5.

(1) If F and G are in direct sum, we say that F and G are supplementary sub-spaces in E.

(2) To say that an element can be uniquely expressed as the sum of an element in F and an

element in G means that an element w = u + v where u ∈ F, v ∈ G and w = u′ + v′ where

u′ ∈ F, v′ ∈ G then u = u′ and v = v′.

(3) In general, there is no uniqueness of the supplementary. In other words, for a vector

subspace F1 of a k-vector space E, we can find many different supplementary F2 such as

F1 ⊕ F2 = E. .

Example 1.11. (1)- Let F = {(x, 0) ∈ R2/x ∈ R} and G = {(0, y) ∈ R2/y ∈ R} two sub-

spaces of R2.

R2 = F ⊕ G because F ∩ G = {0R2} and if any vector of R2 decompose uniquely as

(x, y) = (x, 0) + (0, y), then R2 = F + G,

(2)- We show that there is no uniqueness of the supplementary of a sub-space.

Let’s keep F = {(x, 0) ∈ R2/x ∈ R} and G′ = {(x, x) ∈ R2/x ∈ R}

we have R2 = F ⊕ G′

show that F ∩ G = {0R2} = (0, 0).

If (x, y) ∈ F ∩ G′, then (x, y) ∈ F so y = 0 and (x, y) ∈ G so x = y then (x, y) = (0, 0).

Show that R2 = F + G′

Let u = (x, y) ∈ R2. Find v ∈ F and w ∈ G′ such that u = v + w

(x1, y1) ∈ F so y1 = 0 and (x2, y2) ∈ G′ then x2 = y2. It’s about finding x1 and x2 such

that (x, y) = (x1, 0) + (x2, x2) then (x, y) = (x1 + x2, x2)/ x = x1 + x2, y = x2

Finally (x, y) = (x − y, 0) + (y, y)

Exercise 1. Let R3 be the vector space on the field R, G = [(1, 1, 0), (0, 0, 1), (1, 1, 1)], be a

vector subspace of R3 and let the set F be defined as : F = {(x, y, z) ∈ R3/2x + y − z = 0}

1. Show that F is a vector subspace of R3.
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2. Find a basis for each of : F, G, F ∩ G, F + G, and give their dimensions.

3. Is R3 = F ⊕ G?
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