Chapter 1

Vector spaces

In this chapter \Bbbk represents a field

1.1 Vector space

Definition 1.1. A vector space over \Bbbk is a non-empty set E endowed with two laws:

• an internal composition law called addition and denoted "+"

$$\begin{array}{cccc} +:E\times E & \longrightarrow & E\\ (x,y) & \longmapsto & x+y \end{array}$$

• an *external composition law* called multiplication by a scalar and denoted by "."

$$\begin{array}{cccc} \cdot: \Bbbk \times E & \longrightarrow & E \\ (\lambda, x) & \longmapsto & \lambda \cdot x \end{array}$$

such that:

- 1. (E, +) is a **commutative group**, where the neutral element is denoted by 0_E and the symmetric of an element x of E will be denoted -x;
- 2. The external law must satisfy for all $x \in E$ and $\alpha, \beta \in \Bbbk$:

$$\alpha \cdot (\beta \cdot x) = (\alpha \beta) \cdot x;$$

3. for all $x, y \in E$ and $\alpha, \beta \in \Bbbk$:

$$(\alpha + \beta) \cdot x = \alpha \cdot x + \beta \cdot x;$$

4. for all $x, y \in E$ and $\alpha, \beta \in \Bbbk$:

$$\alpha \cdot (x+y) = (\alpha \cdot x) + (\alpha \cdot y);$$

5. $1_{k} \cdot x = x$.

Elementary property:

Let E be a \Bbbk -vector space, then we have the following properties:

- $\forall x \in E, \ 0 \cdot x = 0_E$
- $\forall \alpha \in \mathbb{k}, \ \alpha \cdot 0 = 0_E$
- $\alpha \cdot x = 0_E \Leftrightarrow \alpha = 0_k$ or $x = 0_E$;

Example 1.1. $(\mathbb{R}, +, .)$ is a \mathbb{R} -vector space and $(\mathbb{C}, +, .)$ is a \mathbb{C} -vector space.

Example 1.2. We consider \mathbb{k}^n the set of ordered sequences of n elements of \mathbb{k} , i.e., $(x_1, x_2, ..., x_n)$ with n being a positive integer. Let $x = (x_1, x_2, ..., x_n)$ and $x' = (x'_1, x'_2, ..., x'_n)$ two elements of \mathbb{k}^n and let $\alpha \in \mathbb{k}$, we set: $x + x' = (x_1 + x'_1, x_2 + x'_2, ..., x_n + x'_n)$ and $\alpha . x = (\alpha . x_1, \alpha . x_2, ..., \alpha . x_n)$. Equipped with these two

laws, it is easy to verify that \mathbb{k}^n is a \mathbb{k} -vector space.

Example 1.3. The set $V = F(\mathbb{R}, \mathbb{R})$ of functions from \mathbb{R} to \mathbb{R} equipped with the laws usual ways of adding functions, and multiplying a function by a scalar: (f+g)(x) = f(x) + g(x) and $(\alpha.f)(x) = \alpha.f(x)$, is a \mathbb{k} - vector space.

1.1.1 Vector subspace

In this part, E will denote a k-vector space.

Definition 1.2. A subset F of E is called a vector subspace on \Bbbk of E if

- (i) $\emptyset \neq F \subset E$,
- (ii) F is a k-vector space.

There is another technique to show that a subset F of E is vector subspace.

Theorem 1.1. A subset F of E is called a **vector subspace** on \Bbbk of E if the following condition hold :

- (i) $0_E \in F$;
- (*ii*) $\forall x, y \in F, x + y \in F;$
- (*ii*) $\forall \alpha \in \mathbb{k}, \forall x \in F, \ \alpha.x \in F.$

Theorem 1.2. Let F be a nonempty subset of E, the following assertions are equivalence :

- F is a vector subspace over k,
- *F* is stable for addition and for multiplication by a scalar .i.e
 ∀x, y ∈ F, x + y ∈ F; and ∀α ∈ k, ∀x ∈ F, α.x ∈ F.
- $\forall x, y \in F, \forall \alpha, \beta \in \mathbb{k}; \alpha.x + \beta.y \in F.$

Example 1.4. (1). E and 0_E are vector sub-spaces of E.

(2). $F = \{(x, y) \in \mathbb{R}^2 | x + y = 0\}$ is a vector subspace of \mathbb{R}^2 over \mathbb{R} because,

- $0_E = 0_{\mathbb{R}^2} = (0,0) \in F \Rightarrow F \neq \emptyset$
- $\forall (x,y), (x',y') \in F, \forall \alpha, \beta \in \mathbb{R} : \alpha(x,y) + \beta(x',y') \in F \text{ i.e } (\alpha x + \beta x', \alpha y + \beta y') \in F$ we have

 $(x,y) \in F \Rightarrow x + y = 0$ and $(x',y') \in F \Rightarrow x' + y' = 0$

$$\alpha x + \beta x' + \alpha y + \beta y' = \alpha (x+y) + \beta (x'+y') = \alpha (0) + \beta (0) = 0$$

Then $\alpha(x, y) + \beta(x', y') \in F$, so F is vector subspace of E.

3. The set $F = \{(x, y) \in \mathbb{R}^2 | x - y + 1 = 0\}$ is not a vector subspace of \mathbb{R}^2 because the zero vector $0_{\mathbb{R}^2}$ does not belong to F.

1.1.2 Intersection and union of vector sub-spaces

Proposition 1.1. The intersection of two vector sub-spaces is a vector subspace.

Proof. Consider F_1 and F_2 two vector sub-spaces of E. First $0_E \in F_1$, because F_1 is a vector subspace of E. Similarly, $0_E \in F_2$. Thus, $0_E \in F_1 \cap F_2$ and $F_1 \cap F_2$ is therefore not empty. Given $x, y \in F_1 \cap F_2$ and $\alpha, \beta \in \mathbb{k}$, we then have $\alpha x + \beta y \in F_1$ since F_1 is a vector subspace of E. Similarly, $\alpha x + \beta y \in F_2$. Thus, $\alpha x + \beta y \in F_1 \cap F_2$. It follows that $F_1 \cap F_2$ is a vector subspace of E.

Lemma 1.1. The intersection $\bigcap_{i=1}^{n} F_i$ of vector subspaces of a vector space E is a vector subspace of E.

Remark 1.1. In general, the union of two vector sub-spaces is not a vector subspace. Indeed, if we consider $E = \mathbb{R}^2$ and the two vector sub-spaces

$$D_1 = \{(x, y) \in \mathbb{R}^2 | y = 0\} \text{ and } D_2 = \{(x, y) \in \mathbb{R}^2 | x = 0\}.$$

Then $D_1 \cup D_2$ is not a vector subspace of E. For example, $(\frac{1}{2}, 0) + (0, \frac{1}{2}) = (\frac{1}{2}, \frac{1}{2})$ is the sum of an element of D_1 and an element of D_2 , but is not in $D_1 \cup D_2$.

1.2 Generating families, Free families, Basis

• Linear combination

Definition 1.3. For $n \in \mathbb{N}^*$, A linear combination of vectors $u_1, u_2, ..., u_n$ of a k-vector space E, is a vector which can be written $V = \sum_{i=1}^n \lambda_i u_i$. The elements $\lambda_1, \lambda_2, ..., \lambda_n \in \mathbb{k}$ are called **coefficients** of the linear combination. **Example 1.5.** In \mathbb{R}^3 , the vector U = (3, 3, 1) is a linear combination of vectors (1, 1, 0) and (1, 1, 1) because U = (3, 3, 1) = 2(1, 1, 0) + (1, 1, 1)

- **Remark 1.2.** If F is a vector subspace of E, and $u_1, u_2, ..., u_n \in F$, then any linear combination $\sum_{i=1}^n \lambda_i u_i$ is in F.
 - Let u₁, u₂, ..., u_n, n vectors of a k-vector space E. One can always write 0_E as a linear combination of these vectors, because it suffices to take all zero coefficients of the linear combination.
 - If n = 1, then $V = \lambda_1 u_1$ we say that V is **colinear** with u_1 .
 - In \mathbb{R}^2 , the vector u = (2, 1) is not colinear with v = (1, 1).

Notation

Given the vectors $u_1, u_2, ..., u_n$ of k-vector space E, we denote $Vect(u_1, u_2, ..., u_n)$ or $\langle u_1, u_2, ..., u_n \rangle$ the set of linear combination of $u_1, u_2, ..., u_n$. So we write :

$$\langle u_1, u_2, \dots, u_n \rangle = Vect(u_1, u_2, \dots, u_n) = \{ u \in E \mid \exists \lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{k}^n; u = \sum_{i=1}^n \lambda_i u_i \}$$

• Generating families

We consider a nonempty family $A = (u_1, u_2, ..., u_n)$ of vectors of a k -vector space E with $n \in \mathbb{N}^*$.

Definition 1.4. We say that A generates E, or that it is generator of E if and only if $Vect(u_1, u_2, ..., u_n) = E$. In other words, any vector of E is a linear combination of the elements of A.

- Example 1.6. $A = \{u_1 = (1,0,0), u_2 = (0,1,0), u_3 = (0,0,1)\}$ generates \mathbb{R}^3 , because for all $U = (x, y, z) \in \mathbb{R}^3$ we have: (x, y, z) = x(1,0,0) + y(0,1,0) + z(0,0,1)
 - Let u₁ = (1, 1, 1), u₂ = (1, 2, 3) two vectors of ℝ³
 We have:

$$(x, y, z) \in Vect(u_1, u_2) = \langle u_1, u_2 \rangle \Leftrightarrow (x, y, z) = \lambda_1(1, 1, 1) + \lambda_2(1, 2, 3) \Leftrightarrow x = \lambda_1 + \lambda_2, \ y = \lambda_1 + 2\lambda_2, \ z = \lambda_1 + 3\lambda_2$$

Then $\{u_1, u_2\}$ generates \mathbb{R}^3

• Free families

Definition 1.5. We say that A is **free** if and only if the null vector 0_E is a linear combination of elements of A unique way. In other words:

 $\forall \lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{k}, \quad \sum_{i=1}^n \lambda_i u_i = 0_E \; \Rightarrow \; \lambda_1 = \lambda_2 = \dots, \lambda_i = 0_E.$

Example 1.7. The set $A = \{u_1 = (1, 0, 1), u_2 = (0, 2, 2), u_3 = (3, 7, 1)\}$ is free Let $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$, we have $\sum_{i=1}^n \lambda_i u_i = \lambda_1(1, 0, 1) + \lambda_2 0, 2, 2) + \lambda_3(3, 7, 1) = 0_{\mathbb{R}^3} \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 0$

Remark 1.3. We can use the following expressions:

- If A is free then we also say that the vectors $(u_1, u_2, ..., u_n)$ are linearly independent.
- If A is not free, we say that A is linked.
- A family of a single vector is **free** if and only if this vector is **non-zero**.
- Basis

Definition 1.6. We say that A is a **basis** of a vector space E if it is **free** and **generating**. In other words, every vector of E is a linear combination of the elements of A in a unique way. So we have:

$$\forall u \in E, \exists ! (\lambda_1, \lambda_2, ..., \lambda_n) \in \mathbb{k}^n \ u = \sum_{i=1}^n \lambda_i u_i$$

where $\lambda_1, \lambda_2, ..., \lambda_n$ are called the **coordinates** of the vector u in this basis A.

1.3 Dimension of Vector spaces

finite type

Definition 1.7. A vector space is said to be of **finite type** if it admits a finite generating family. In other words: if a vector space is generated by a finite family of vectors, it is said to be of **finite type**.

Theorem 1.3. In a finite dimensional vector space E, all **basis** have the same number of elements. This number denoted dim(E) is called the **dimension** of E.

Theorem 1.4. Let A be a family of elements of E of finite dimension n. The following properties are equivalent:

- (i) A is a basis of E.
- (ii) A is free and generates E.
- (iii) A is free and cardinal(A) = n.

(v) A is the generator of E and cardinal(A) = n.

Example 1.8. The set $A = \{u_1 = (1, 2), u_2 = (2, -1)\}$ generates \mathbb{R}^2 . What can we conclude? To show that A is a generating family, we look for two real λ_1, λ_2 such that: for all $u = (x, y)in\mathbb{R}^2$

 $U = \lambda_1 u_1 + \lambda_2 u_2$. After the calculation we will have $\lambda_1 = \frac{1}{5}(x+2y), \lambda_2 = \frac{1}{5}(x-2y)$ Which means that A generates \mathbb{R}^2 . On the other hand, it is clear that A is free, of cardinal 2, so A is a basis of \mathbb{R}^2 .

- We deduce that in a vector space E, any free family (or generator) whose number of elements is equal to the dimension of E is a basis.

Theorem 1.5. Let F be a vector subspace of $E - \Bbbk$ vector space, we have

- $dim(F) \le dim(E)$
- $dim(F) = dim(E) \Leftrightarrow E = F$

Corollary 1.1. (1)- Every vector space of finite type admits a finite basis, and all its bases have the same cardinality.

In a vector space of dimension n, we have:

- (2)- Any free family has at most n elements.
- (3)- Any generating family has at least n elements

1.3.1 Rank of finite family of vectors

Definition 1.8. Let E be a k-vector space and $G = \{v_1, v_2, ..., v_m\}$ a family of m vectors of E. The **rank** of the family G noted rank(G) is the dimension of the vector subspace $F = Vect(v_1, v_2, ..., v_m)$ generated by the vectors $v_1, v_2, ..., v_m$ i.e, rank(G) = dim(F). or the largest number of linearly indepent vectors.

Properties : Let E be a k-vector space and $G = \{v_1, v_2, ..., v_m\}$ a family of vectors of E. So we have:

- 1 $0 \leq rank(G) \leq m$.
- 2 If dim(E) = n (finite), then $rank(G) \le n$.
- 3 rank(G) = m if and only if G is free.
- 4 rank(G) = 0 if and only if all vectors of G are zero.

Example 1.9. Let $G = \{v_1 = (2,3), v_2 = (4,2), v_3 = (-3,4)\}$ be a family of the vector space \mathbb{R}^2 . Determine the rank of G.

It is clear that v_2 and v_3 are linearly independent. On the other hand, by solving the linear system $\alpha_1v_1 + \alpha_2v_2 + \alpha_3v_3 = 0$, we get $2v_1 - v_2 - v_3 = 0$. The family G is therefore dependent. We deduce that $Vect(v_1, v_2, v_3) = Vect(v_1, v_2)$. So rank(G) = 2.

1.4 Complementary vector subspace

1.4.1 • Sum of two vector sub-spaces

Definition 1.9. Let F_1 and F_2 be two vector sub-spaces of a k-vector space E. We call sum of F_1 and F_2 the set noted $F_1 + F_2$, vectors which are the sum of a vector of F_1 and a vector of F_2 :

$$F_1 + F_2 = \{ u : u = u_1 + u_2, u_1 \in F_1, u_2 \in F_2 \}.$$

Remark 1.4. We can characterize the vectors u of the sum $F_1 + F_2$, by:

$$u \in F_1 + F_2 \iff \exists (u_1, u_2) \in F_1 \times F_2, \ u = u_1 + u_2$$

Proposition 1.2. Let F_1 and F_2 be two vector sub-spaces of a k-vector space E.

- (1)- $F_1 + F_2$ is a vector subspace of E.
- (2)- $F_1 + F_2$ is the smallest vector subspace of E containing both F_1 and F_2 .
- Proof. (1) Consider F_1 and F_2 be two vector sub-spaces of E. First $0_E \in F_1$ because F_1 is a vector subspace of E. Similarly, $0_E \in F_2$ Thus, $0_E = 0_E + 0_E \in F_1 + F_2$ and $F_1 + F_2$ is therefore not empty. Let $x, y \in F_1 + F_2$ and $\alpha, \beta \in \mathbb{k}$. Since $x \in F_1 + F_2$, there are $x_1 \in F_1$ and $x_2 \in F_2$ such that : $x = x_1 + x_2$ so $\alpha x = \alpha(x_1 + x_2) = \alpha(x_1) + \alpha(x_2) \in F_1 + F_2$, because $\alpha(x_1) \in F_1$ and $\alpha(x_2) \in F_2$. Similarly for $y \in F_1 + F_2$, we get $\beta y = \beta(y_1 + y_2) = \beta(y_1) + \beta(y_2) \in F_1 + F_2$, because $\beta(y_1) \in F_1$ and $\beta(y_2) \in F_2$ with $y = y_1 + y_2$. It follows that $\alpha x + \beta y = (\alpha x_1 + \beta y_1) + (\alpha x_2 + \beta y_2) \in F_1 + F_2$.
 - (2) We first show that the set F₁+F₂ contains both F₁ and F₂. Indeed, any element u₁ ∈ F₁ is written u₁ = u₁ + 0_E with u₁ belonging to F₁ and 0_E belonging to F₂, because F₂ is a vector subspace of E. u₁ belongs to F₁ + F₂. The same for an element of F₂. Now we show that if H is a vector subspace containing F₁ and F₂, then F₁ + F₂ ⊂ H. As F₁ ⊂ H. we therefore have, if u₁ ∈ F₁ then in particular u₁ ∈ H. Similarly, if u₂ ∈ F₂

then $u_2 \in H$. Since H is a vector subspace, then $F_1 + F_2 \subset H$.

Example 1.10. Determine F + G where F and G be two vector sub-spaces of \mathbb{R}^3 $F = \{(x, y, z) \in \mathbb{R}^3 : y = z = 0\}$ and $G = \{(x, y, z) \in \mathbb{R}^3 : x = z = 0\}$ any element w of F + G is written w = u + v where u an element of F and v an element of G. For all $u \in F$ there exist $x \in \mathbb{R}$ such that u = (x, 0, 0) and for all $v \in G$, there exist $y \in \mathbb{R}$ such that v = (0, y, 0), so w = u + v = (x, y, 0) is the sum of (x, 0, 0) and (0, y, 0). Conversely, all element w = (x, y, 0) = (x, 0, 0) + (0, y, 0) is a sum of an element of F and an element of G. Then $F + G = \{(x, y, z) \in \mathbb{R}^3 : z = 0\}$ **Proposition 1.3.** 4 (Grassmann formula). Let E be \mathbb{k} - vector space of finite dimension, F_1 and F_2 be two vector sub-spaces of E, then :

$$dimE = dimF_1 + dimF_2 - dim(F_1 \cap F_2)$$

For the existence of additional sub-spaces in finite dimension, the incomplete basis theorem says that in a finite dimensional vector space, any free family can be completed into a basis of the space. We immediately deduce the existence of supplementary ones.

1.4.2 • Direct sum of two vector sub-spaces

Proposition 1.4. Let F_1 and F_2 be two vector sub-spaces of E. We say that the sum $F_1 + F_2$ is **direct** if any vector of $F_1 + F_2$ decomposes **uniquely** as the sum of an element of F_1 and an element of F_2

 $E = F_1 \oplus F_2$ then $\forall w \in E$, $\exists ! \ u \in F_1$ $\exists ! \ v \in F_2$ such that : w = u + v

Notation When F_1 and F_2 are in direct sum, we write $F_1 + F_2 = F_1 \oplus F_2$.

Definition 1.10. Let F_1 and F_2 be two vector sub-spaces of E. We say that the sum $F_1 + F_2$ is **direct** $(E = F_1 \oplus F_2)$ if and only if

- $F_1 \cap F_2 = 0_E$
- $E = F_1 + F_2$

Corollary 1.2. Let E be \Bbbk - vector space of finite dimension, then the following conditions are equivalent.

- (1) $E = F_1 \oplus F_2$
- (2) $F_1 \cap F_2 = 0_E$ and $dimE = dimF_1 + dimF_2$
- (3) $E = F_1 + F_2$ and $dimE = dimF_1 + dimF_2$

Remark 1.5.

- (1) If F and G are in direct sum, we say that F and G are supplementary sub-spaces in E.
- (2) To say that an element can be uniquely expressed as the sum of an element in F and an element in G means that an element w = u + v where $u \in F, v \in G$ and w = u' + v' where $u' \in F, v' \in G$ then u = u' and v = v'.
- (3) In general, there is no uniqueness of the supplementary. In other words, for a vector subspace F₁ of a k-vector space E, we can find many different supplementary F₂ such as F₁ ⊕ F₂ = E.
- **Example 1.11.** (1)- Let $F = \{(x,0) \in \mathbb{R}^2 | x \in \mathbb{R}\}$ and $G = \{(0,y) \in \mathbb{R}^2 | y \in \mathbb{R}\}$ two subspaces of \mathbb{R}^2 . $\mathbb{R}^2 = F \oplus G$ because $F \cap G = \{0_{\mathbb{R}^2}\}$ and if any vector of \mathbb{R}^2 decompose uniquely as (x,y) = (x,0) + (0,y), then $\mathbb{R}^2 = F + G$,
- (2)- We show that there is no uniqueness of the supplementary of a sub-space. Let's keep $F = \{(x, 0) \in \mathbb{R}^2 / x \in \mathbb{R}\}$ and $G' = \{(x, x) \in \mathbb{R}^2 / x \in \mathbb{R}\}$ we have $\mathbb{R}^2 = F \oplus G'$ show that $F \cap G = \{0_{\mathbb{R}^2}\} = (0, 0)$. If $(x, y) \in F \cap G'$, then $(x, y) \in F$ so y = 0 and $(x, y) \in G$ so x = y then (x, y) = (0, 0). Show that $\mathbb{R}^2 = F + G'$ Let $u = (x, y) \in \mathbb{R}^2$. Find $v \in F$ and $w \in G'$ such that u = v + w $(x_1, y_1) \in F$ so $y_1 = 0$ and $(x_2, y_2) \in G'$ then $x_2 = y_2$. It's about finding x_1 and x_2 such that $(x, y) = (x_1, 0) + (x_2, x_2)$ then $(x, y) = (x_1 + x_2, x_2) / x = x_1 + x_2, y = x_2$ Finally (x, y) = (x - y, 0) + (y, y)

Exercise 1. Let \mathbb{R}^3 be the vector space on the field \mathbb{R} , G = [(1,1,0), (0,0,1), (1,1,1)], be a vector subspace of \mathbb{R}^3 and let the set F be defined as : $F = \{(x,y,z) \in \mathbb{R}^3/2x + y - z = 0\}$

1. Show that F is a vector subspace of \mathbb{R}^3 .

- 2. Find a basis for each of : F, G, $F \cap G$, F + G, and give their dimensions.
- 3. Is $\mathbb{R}^3 = F \oplus G$?