Chapter 1

Vector spaces

In this chapter \mathbb{k} represents a field

1.1 Vector space

Definition 1.1. A vector space over \mathbb{k} is a non-empty set E endowed with two laws:

- an internal composition law called addition and denoted " + "

$$
\begin{aligned}
+: E \times E & \longrightarrow E \\
(x, y) & \longmapsto x+y
\end{aligned}
$$

- an external composition law called multiplication by a scalar and denoted by "."

$$
\begin{aligned}
\cdot: \mathbb{k} \times E & \longrightarrow \\
(\lambda, x) & \longmapsto \lambda \cdot x
\end{aligned}
$$

such that:

1. $(E,+)$ is a commutative group, where the neutral element is denoted by 0_{E} and the symmetric of an element x of E will be denoted $-x$;
2. The external law must satisfy for all $x \in E$ and $\alpha, \beta \in \mathbb{k}$:

$$
\alpha \cdot(\beta \cdot x)=(\alpha \beta) \cdot x
$$

3. for all $x, y \in E$ and $\alpha, \beta \in \mathbb{k}$:

$$
(\alpha+\beta) \cdot x=\alpha \cdot x+\beta \cdot x
$$

4. for all $x, y \in E$ and $\alpha, \beta \in \mathbb{k}$:

$$
\alpha \cdot(x+y)=(\alpha \cdot x)+(\alpha \cdot y) ;
$$

5. $1_{\mathbb{k}} \cdot x=x$.

Elementary property:

Let E be a \mathbb{k}-vector space, then we have the following properties:

- $\forall x \in E, 0 \cdot x=0_{E}$
- $\forall \alpha \in \mathbb{k}, \alpha \cdot 0=0_{E}$
- $\alpha \cdot x=0_{E} \Leftrightarrow \alpha=0_{\mathrm{k}}$ or $x=0_{E}$;

Example 1.1. $(\mathbb{R},+,$.$) is a \mathbb{R}$-vector space and $(\mathbb{C},+,$.$) is a \mathbb{C}$-vector space.

Example 1.2. We consider \mathbb{k}^{n} the set of ordered sequences of n elements of \mathbb{k}, i.e., $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ with n being a positive integer. Let $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $x^{\prime}=\left(x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{n}^{\prime}\right)$ two elements of \mathbb{k}^{n} and let $\alpha \in \mathbb{k}$, we set:
$x+x^{\prime}=\left(x_{1}+x_{1}^{\prime}, x_{2}+x_{2}^{\prime}, \ldots, x_{n}+x_{n}^{\prime}\right)$ and $\alpha \cdot x=\left(\alpha \cdot x_{1}, \alpha \cdot x_{2}, \ldots, \alpha \cdot x_{n}\right)$. Equipped with these two laws, it is easy to verify that \mathbb{k}^{n} is $a \mathbb{k}$-vector space.

Example 1.3. The set $V=F(\mathbb{R}, \mathbb{R})$ of functions from \mathbb{R} to \mathbb{R} equipped with the laws usual ways of adding functions, and multiplying a function by a scalar: $(f+g)(x)=f(x)+g(x)$ and $(\alpha \cdot f)(x)=\alpha \cdot f(x)$, is $a \mathbb{k}$ - vector space.

1.1.1 Vector subspace

In this part, E will denote a \mathbb{k}-vector space.
Definition 1.2. A subset F of E is called a vector subspace on \mathbb{k} of E if
(i) $\emptyset \neq F \subset E$,
(ii) F is $a \mathbb{k}$-vector space.

There is another technique to show that a subset F of E is vector subspace.
Theorem 1.1. A subset F of E is called a vector subspace on \mathbb{k} of E if the following condition hold :
(i) $0_{E} \in F$;
(ii) $\forall x, y \in F, x+y \in F$;
(ii) $\forall \alpha \in \mathbb{k}, \forall x \in F, \alpha . x \in F$.

Theorem 1.2. Let F be a nonempty subset of E, the following assertions are equivalence :

- F is a vector subspace over \mathbb{k},
- F is stable for addition and for multiplication by a scalar .i.e
$\forall x, y \in F, x+y \in F ;$ and $\forall \alpha \in \mathbb{k}, \forall x \in F, \alpha . x \in F$.
- $\forall x, y \in F, \forall \alpha, \beta \in \mathbb{k} ; \alpha . x+\beta . y \in F$.

Example 1.4. (1). E and 0_{E} are vector sub-spaces of E.
(2). $F=\left\{(x, y) \in \mathbb{R}^{2} / x+y=0\right\}$ is a vector subspace of \mathbb{R}^{2} over \mathbb{R} because,

- $0_{E}=0_{\mathbb{R}^{2}}=(0,0) \in F \Rightarrow F \neq \emptyset$
- $\forall(x, y),\left(x^{\prime}, y^{\prime}\right) \in F, \forall \alpha, \beta \in \mathbb{R}: \alpha(x, y)+\beta\left(x^{\prime}, y^{\prime}\right) \in F$ i.e $\left(\alpha x+\beta x^{\prime}, \alpha y+\beta y^{\prime}\right) \in F$ we have

$$
(x, y) \in F \Rightarrow x+y=0 \text { and }\left(x^{\prime}, y^{\prime}\right) \in F \Rightarrow x^{\prime}+y^{\prime}=0
$$

$$
\alpha x+\beta x^{\prime}+\alpha y+\beta y^{\prime}=\alpha(x+y)+\beta\left(x^{\prime}+y^{\prime}\right)=\alpha(0)+\beta(0)=0
$$

Then $\alpha(x, y)+\beta\left(x^{\prime}, y^{\prime}\right) \in F$, so F is vector subspace of E.
3. The set $F=\left\{(x, y) \in \mathbb{R}^{2} / x-y+1=0\right\}$ is not a vector subspace of \mathbb{R}^{2} because the zero vector $0_{\mathbb{R}^{2}}$ does not belong to F.

1.1.2 Intersection and union of vector sub-spaces

Proposition 1.1. The intersection of two vector sub-spaces is a vector subspace.
Proof. Consider F_{1} and F_{2} two vector sub-spaces of E. First $0_{E} \in F_{1}$, because F_{1} is a vector subspace of E. Similarly, $0_{E} \in F_{2}$. Thus, $0_{E} \in F_{1} \cap F_{2}$ and $F_{1} \cap F_{2}$ is therefore not empty. Given $x, y \in F_{1} \cap F_{2}$ and $\alpha, \beta \in \mathbb{k}$, we then have $\alpha x+\beta y \in F_{1}$ since F_{1} is a vector subspace of E. Similarly, $\alpha x+\beta y \in F_{2}$. Thus, $\alpha x+\beta y \in F_{1} \cap F_{2}$. It follows that $F_{1} \cap F_{2}$ is a vector subspace of E.

Lemma 1.1. The intersection $\cap_{i=1}^{n} F_{i}$ of vector subspaces of a vector space E is a vector subspace of E.

Remark 1.1. In general, the union of two vector sub-spaces is not a vector subspace.
Indeed, if we consider $E=\mathbb{R}^{2}$ and the two vector sub-spaces

$$
D_{1}=\left\{(x, y) \in \mathbb{R}^{2} \mid y=0\right\} \text { and } D_{2}=\left\{(x, y) \in \mathbb{R}^{2} \mid x=0\right\}
$$

Then $D_{1} \cup D_{2}$ is not a vector subspace of E. For example, $\left(\frac{1}{2}, 0\right)+\left(0, \frac{1}{2}\right)=\left(\frac{1}{2}, \frac{1}{2}\right)$ is the sum of an element of D_{1} and an element of D_{2}, but is not in $D_{1} \cup D_{2}$.

1.2 Generating families, Free families, Basis

- Linear combination

Definition 1.3. For $n \in \mathbb{N}^{*}$, A linear combination of vectors $u_{1}, u_{2}, \ldots, u_{n}$ of $a \mathbb{k}$-vector space E, is a vector which can be written $V=\sum_{i=1}^{n} \lambda_{i} u_{i}$. The elements $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n} \in \mathbb{k}$ are called coefficients of the linear combination.

Example 1.5. In \mathbb{R}^{3}, the vector $U=(3,3,1)$ is a linear combination of vectors $(1,1,0)$ and $(1,1,1)$ because $U=(3,3,1)=2(1,1,0)+(1,1,1)$

Remark 1.2. - If F is a vector subspace of E, and $u_{1}, u_{2}, \ldots, u_{n} \in F$, then any linear combination $\sum_{i=1}^{n} \lambda_{i} u_{i}$ is in F.

- Let $u_{1}, u_{2}, \ldots, u_{n}$, n vectors of $a \mathbb{k}$-vector space E. One can always write 0_{E} as a linear combination of these vectors, because it suffices to take all zero coefficients of the linear combination.
- If $n=1$, then $V=\lambda_{1} u_{1}$ we say that V is colinear with u_{1}.
- In \mathbb{R}^{2}, the vector $u=(2,1)$ is not colinear with $v=(1,1)$.

Notation

Given the vectors $u_{1}, u_{2}, \ldots, u_{n}$ of \mathbb{k}-vector space E, we denote $\operatorname{Vect}\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ or $\left\langle u_{1}, u_{2}, \ldots, u_{n}\right\rangle$ the set of linear combination of $u_{1}, u_{2}, \ldots, u_{n}$. So we write :

$$
\left\langle u_{1}, u_{2}, \ldots, u_{n}\right\rangle=\operatorname{Vect}\left(u_{1}, u_{2}, \ldots, u_{n}\right)=\left\{u \in E \mid \exists \lambda_{1}, \lambda_{2}, \ldots, \lambda_{n} \in \mathbb{k}^{n} ; u=\sum_{i=1}^{n} \lambda_{i} u_{i}\right\}
$$

- Generating families

We consider a nonempty family $A=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ of vectors of a \mathbb{k}-vector space E with $n \in \mathbb{N}^{*}$.

Definition 1.4. We say that A generates E, or that it is generator of E if and only if $V e c t\left(u_{1}, u_{2}, \ldots, u_{n}\right)=E$. In other words, any vector of E is a linear combination of the elements of A.

Example 1.6. - $A=\left\{u_{1}=(1,0,0), u_{2}=(0,1,0), u_{3}=(0,0,1)\right\}$ generates \mathbb{R}^{3}, because for all $U=(x, y, z) \in \mathbb{R}^{3}$ we have: $(x, y, z)=x(1,0,0)+y(0,1,0)+z(0,0,1)$

- Let $u_{1}=(1,1,1), u_{2}=(1,2,3)$ two vectors of \mathbb{R}^{3}

We have:

$$
\begin{gathered}
(x, y, z) \in V e c t\left(u_{1}, u_{2}\right)=\left\langle u_{1}, u_{2}\right\rangle \Leftrightarrow(x, y, z)=\lambda_{1}(1,1,1)+\lambda_{2}(1,2,3) \Leftrightarrow x= \\
\lambda_{1}+\lambda_{2}, y=\lambda_{1}+2 \lambda_{2}, z=\lambda_{1}+3 \lambda_{2}
\end{gathered}
$$

- Free families

Definition 1.5. We say that A is free if and only if the null vector 0_{E} is a linear combination of elements of A unique way. In other words:

$$
\forall \lambda_{1}, \lambda_{2}, \ldots, \lambda_{n} \in \mathbb{k}, \quad \sum_{i=1}^{n} \lambda_{i} u_{i}=0_{E} \Rightarrow \lambda_{1}=\lambda_{2}=\ldots . . \lambda_{i}=0_{E}
$$

Example 1.7. The set $A=\left\{u_{1}=(1,0,1), u_{2}=(0,2,2), u_{3}=(3,7,1)\right\}$ is free
Let $\lambda_{1}, \lambda_{2}, \lambda_{3} \in \mathbb{R}$, we have
$\left.\sum_{i=1}^{n} \lambda_{i} u_{i}=\lambda_{1}(1,0,1)+\lambda_{2} 0,2,2\right)+\lambda_{3}(3,7,1)=0_{\mathbb{R}^{3}} \Rightarrow \lambda_{1}=\lambda_{2}=\lambda_{3}=0$
Remark 1.3. We can use the following expressions:

- If A is free then we also say that the vectors $\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ are linearly independent.
- If A is not free, we say that A is linked.
- A family of a single vector is free if and only if this vector is non-zero.
- Basis

Definition 1.6. We say that A is a basis of a vector space E if it is free and generating. In other words, every vector of E is a linear combination of the elements of A in a unique way. So we have:

$$
\forall u \in E, \exists!\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right) \in \mathbb{k}^{n} \quad u=\sum_{i=1}^{n} \lambda_{i} u_{i}
$$

where $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are called the coordinates of the vector u in this basis A.

1.3 Dimension of Vector spaces

finite type

Definition 1.7. A vector space is said to be of finite type if it admits a finite generating family. In other words: if a vector space is generated by a finite family of vectors, it is said to be of finite type .

Theorem 1.3. In a finite dimensional vector space E, all basis have the same number of elements. This number denoted $\operatorname{dim}(E)$ is called the dimension of E.

Theorem 1.4. Let A be a family of elements of E of finite dimension n. The following properties are equivalent:
(i) A is a basis of E.
(ii) A is free and generates E.
(iii) A is free and $\operatorname{cardinal}(A)=n$.
(v) A is the generator of E and cardinal $(A)=n$.

Example 1.8. The set $A=\left\{u_{1}=(1,2), u_{2}=(2,-1)\right\}$ generates \mathbb{R}^{2}. What can we conclude? To show that A is a generating family, we look for two real λ_{1}, λ_{2} such that: for allu $=$ $(x, y) i n \mathbb{R}^{2}$
$U=\lambda_{1} u_{1}+\lambda_{2} u_{2}$. After the calculation we will have $\lambda_{1}=\frac{1}{5}(x+2 y), \lambda_{2}=\frac{1}{5}(x-2 y)$ Which means that A generates \mathbb{R}^{2}. On the other hand, it is clear that A is free, of cardinal 2, so A is a basis of \mathbb{R}^{2}.

- We deduce that in a vector space E, any free family (or generator) whose number of elements is equal to the dimension of E is a basis.

Theorem 1.5. Let F be a vector subspace of $E-\mathbb{k}$ vector space, we have

- $\operatorname{dim}(F) \leq \operatorname{dim}(E)$
- $\operatorname{dim}(F)=\operatorname{dim}(E) \Leftrightarrow E=F$

Corollary 1.1. (1)- Every vector space of finite type admits a finite basis, and all its bases have the same cardinality.
In a vector space of dimension n, we have:
(2)- Any free family has at most n elements.
(3)- Any generating family has at least n elements

1.3.1 Rank of finite family of vectors

Definition 1.8. Let E be $a \mathbb{k}$-vector space and $G=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ a family of m vectors of E. The rank of the family G noted $\operatorname{rank}(G)$ is the dimension of the vector subspace $F=$ $\operatorname{Vect}\left(v_{1}, v_{2}, \ldots, v_{m}\right)$ generated by the vectors $v_{1}, v_{2}, \ldots, v_{m}$ i.e, $\operatorname{rank}(G)=\operatorname{dim}(F)$. or the largest number of linearly indepent vectors.

Properties : Let E be a \mathbb{k}-vector space and $G=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ a family of vectors of E. So we have:
$10 \leq \operatorname{rank}(G) \leq m$.
2 If $\operatorname{dim}(E)=n$ (finite), then $\operatorname{rank}(G) \leq n$.
$3 \operatorname{rank}(G)=m$ if and only if G is free.
$4 \operatorname{rank}(G)=0$ if and only if all vectors of G are zero.
Example 1.9. Let $G=\left\{v_{1}=(2,3), v_{2}=(4,2), v_{3}=(-3,4)\right\}$ be a family of the vector space \mathbb{R}^{2}. Determine the rank of G.
It is clear that v_{2} and v_{3} are linearly independent. On the other hand, by solving the linear system $\alpha_{1} v_{1}+\alpha_{2} v_{2}+\alpha_{3} v_{3}=0$, we get $2 v_{1}-v_{2}-v_{3}=0$. The family G is therefore dependent. We deduce that $\operatorname{Vect}\left(v_{1}, v_{2}, v_{3}\right)=\operatorname{Vect}\left(v_{1}, v_{2}\right)$. So $\operatorname{rank}(G)=2$.

1.4 Complementary vector subspace

1.4.1 - Sum of two vector sub-spaces

Definition 1.9. Let F_{1} and F_{2} be two vector sub-spaces of $a \mathbb{k}$-vector space E. We call sum of F_{1} and F_{2} the set noted $F_{1}+F_{2}$, vectors which are the sum of a vector of F_{1} and a vector of F_{2} :

$$
F_{1}+F_{2}=\left\{u: u=u_{1}+u_{2}, u_{1} \in F_{1}, u_{2} \in F_{2}\right\} .
$$

Remark 1.4. We can characterize the vectors u of the sum $F_{1}+F_{2}$, by:

$$
u \in F_{1}+F_{2} \Leftrightarrow \exists\left(u_{1}, u_{2}\right) \in F_{1} \times F_{2}, u=u_{1}+u_{2}
$$

Proposition 1.2. Let F_{1} and F_{2} be two vector sub-spaces of $a \mathbb{k}$-vector space E.
(1)- $F_{1}+F_{2}$ is a vector subspace of E.
(2)- $F_{1}+F_{2}$ is the smallest vector subspace of E containing both F_{1} and F_{2}.

Proof. (1) Consider F_{1} and F_{2} be two vector sub-spaces of E. First $0_{E} \in F_{1}$ because F_{1} is a vector subspace of E. Similarly, $0_{E} \in F_{2}$ Thus, $0_{E}=0_{E}+0_{E} \in F_{1}+F_{2}$ and $F_{1}+F_{2}$ is therefore not empty. Let $x, y \in F_{1}+F_{2}$ and $\alpha, \beta \in \mathbb{k}$. Since $x \in F_{1}+F_{2}$, there are $x_{1} \in F_{1}$ and $x_{2} \in F_{2}$ such that : $x=x_{1}+x_{2} \operatorname{so\alpha } x=\alpha\left(x_{1}+x_{2}\right)=\alpha\left(x_{1}\right)+\alpha\left(x_{2}\right) \in F_{1}+F_{2}$, because $\alpha\left(x_{1}\right) \in F_{1}$ and $\alpha\left(x_{2}\right) \in F_{2}$. Similarly for $y \in F_{1}+F_{2}$, weget $\beta y=\beta\left(y_{1}+y_{2}\right)=$ $\beta\left(y_{1}\right)+\beta\left(y_{2}\right) \in F_{1}+F_{2}$, because $\beta\left(y_{1}\right) \in F_{1}$ and $\beta\left(y_{2}\right) \in F_{2}$ with $y=y_{1}+y_{2}$.

It follows that $\alpha x+\beta y=\left(\alpha x_{1}+\beta y_{1}\right)+\left(\alpha x_{2}+\beta y_{2}\right) \in F_{1}+F_{2}$.
(2) We first show that the set $F_{1}+F_{2}$ contains both F_{1} and F_{2}. Indeed, any element $u_{1} \in F_{1}$ is written $u_{1}=u_{1}+0_{E}$ with u_{1} belonging to F_{1} and 0_{E} belonging to F_{2}, because F_{2} is a vector subspace of E. u_{1} belongs to $F_{1}+F_{2}$. The same for an element of F_{2}.

Now we show that if H is a vector subspace containing F_{1} and F_{2}, then $F_{1}+F_{2} \subset H$. As $F_{1} \subset H$. we therefore have, if $u_{1} \in F_{1}$ then in particular $u_{1} \in H$. Similarly, if $u_{2} \in F_{2}$ then $u_{2} \in H$.. Since H is a vector subspace, then $F_{1}+F_{2} \subset H$.

Example 1.10. Determine $F+G$ where F and G be two vector sub-spaces of \mathbb{R}^{3}
$F=\left\{(x, y, z) \in \mathbb{R}^{3}: y=z=0\right\}$ and $G=\left\{(x, y, z) \in \mathbb{R}^{3}: x=z=0\right\}$
any element w of $F+G$ is written $w=u+v$ where u an element of F and v an element of G. For all $u \in F$ there exist $x \in \mathbb{R}$ such that $u=(x, 0,0)$ and for all $v \in G$, there exist $y \in \mathbb{R}$ such that $v=(0, y, 0)$, so $w=u+v=(x, y, 0)$ is the sum of $(x, 0,0)$ and $(0, y, 0)$.

Conversely, all element $w=(x, y, 0)=(x, 0,0)+(0, y, 0)$ is a sum of an element of F and an element of G. Then $F+G=\left\{(x, y, z) \in \mathbb{R}^{3}: z=0\right\}$

Proposition 1.3. 4 (Grassmann formula). Let E be \mathbb{k} - vector space of finite dimension, F_{1} and F_{2} be two vector sub-spaces of E, then:

$$
\operatorname{dim} E=\operatorname{dim} F_{1}+\operatorname{dim} F_{2}-\operatorname{dim}\left(F_{1} \cap F_{2}\right)
$$

For the existence of additional sub-spaces in finite dimension, the incomplete basis theorem says that in a finite dimensional vector space, any free family can be completed into a basis of the space. We immediately deduce the existence of supplementary ones.

1.4.2 - Direct sum of two vector sub-spaces

Proposition 1.4. Let F_{1} and F_{2} be two vector sub-spaces of E. We say that the sum $F_{1}+F_{2}$ is direct if any vector of $F_{1}+F_{2}$ decomposes uniquely as the sum of an element of F_{1} and an element of F_{2}

$$
E=F_{1} \oplus F_{2} \text { then } \forall w \in E, \quad \exists!u \in F_{1} \quad \exists!\quad v \in F_{2} \quad \text { such that }: \quad w=u+v
$$

Notation When F_{1} and F_{2} are in direct sum, we write $F_{1}+F_{2}=F_{1} \oplus F_{2}$.

Definition 1.10. Let F_{1} and F_{2} be two vector sub-spaces of E. We say that the sum $F_{1}+F_{2}$ is direct $\left(E=F_{1} \oplus F_{2}\right)$ if and only if

- $F_{1} \cap F_{2}=0_{E}$
- $E=F_{1}+F_{2}$

Corollary 1.2. Let E be \mathbb{k}-vector space of finite dimension, then the following conditions are equivalent.
(1) $E=F_{1} \oplus F_{2}$
(2) $F_{1} \cap F_{2}=0_{E}$ and $\operatorname{dim} E=\operatorname{dim} F_{1}+\operatorname{dim} F_{2}$
(3) $E=F_{1}+F_{2}$ and $\operatorname{dim} E=\operatorname{dim} F_{1}+\operatorname{dim} F_{2}$

Remark 1.5.

(1) If F and G are in direct sum, we say that F and G are supplementary sub-spaces in E.
(2) To say that an element can be uniquely expressed as the sum of an element in F and an element in G means that an element $w=u+v$ where $u \in F, v \in G$ and $w=u^{\prime}+v^{\prime}$ where $u^{\prime} \in F, v^{\prime} \in G$ then $u=u^{\prime}$ and $v=v^{\prime}$.
(3) In general, there is no uniqueness of the supplementary. In other words, for a vector subspace F_{1} of a \mathbb{k}-vector space E, we can find many different supplementary F_{2} such as $F_{1} \oplus F_{2}=E$.

Example 1.11. (1)- Let $F=\left\{(x, 0) \in \mathbb{R}^{2} / x \in \mathbb{R}\right\}$ and $G=\left\{(0, y) \in \mathbb{R}^{2} / y \in \mathbb{R}\right\}$ two subspaces of \mathbb{R}^{2}.
$\mathbb{R}^{2}=F \oplus G$ because $F \cap G=\left\{0_{\mathbb{R}^{2}}\right\}$ and if any vector of \mathbb{R}^{2} decompose uniquely as $(x, y)=(x, 0)+(0, y)$, then $\mathbb{R}^{2}=F+G$,
(2)- We show that there is no uniqueness of the supplementary of a sub-space.

Let's keep $F=\left\{(x, 0) \in \mathbb{R}^{2} / x \in \mathbb{R}\right\}$ and $G^{\prime}=\left\{(x, x) \in \mathbb{R}^{2} / x \in \mathbb{R}\right\}$
we have $\mathbb{R}^{2}=F \oplus G^{\prime}$
show that $F \cap G=\left\{0_{\mathbb{R}^{2}}\right\}=(0,0)$.
If $(x, y) \in F \cap G^{\prime}$, then $(x, y) \in F$ so $y=0$ and $(x, y) \in G$ so $x=y$ then $(x, y)=(0,0)$.
Show that $\mathbb{R}^{2}=F+G^{\prime}$
Let $u=(x, y) \in \mathbb{R}^{2}$. Find $v \in F$ and $w \in G^{\prime}$ such that $u=v+w$
$\left(x_{1}, y_{1}\right) \in F$ so $y_{1}=0$ and $\left(x_{2}, y_{2}\right) \in G^{\prime}$ then $x_{2}=y_{2}$. It's about finding x_{1} and x_{2} such that $(x, y)=\left(x_{1}, 0\right)+\left(x_{2}, x_{2}\right)$ then $(x, y)=\left(x_{1}+x_{2}, x_{2}\right) / x=x_{1}+x_{2}, y=x_{2}$
Finally $(x, y)=(x-y, 0)+(y, y)$

Exercise 1. Let \mathbb{R}^{3} be the vector space on the field $\mathbb{R}, G=[(1,1,0),(0,0,1),(1,1,1)]$, be a vector subspace of \mathbb{R}^{3} and let the set F be defined as : $F=\left\{(x, y, z) \in \mathbb{R}^{3} / 2 x+y-z=0\right\}$

1. Show that F is a vector subspace of \mathbb{R}^{3}.
2. Find a basis for each of : $F, G, F \cap G, F+G$, and give their dimensions.
3. Is $\mathbb{R}^{3}=F \oplus G$?
